Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải hết không nổi =.= đành giải vài bài thôi :v . Lần sau bạn nên đăng từ từ để người giải bớt ngán nhé!
Bài 1
a) \(2\left(x+5\right)=x^2+5x\)
\(\Leftrightarrow2x+10=x^2+5x\)
\(\Leftrightarrow x^2+5x-2x=10\)
\(\Leftrightarrow x^2+3x=10\Leftrightarrow x\left(x+3\right)=10\Leftrightarrow\hept{\begin{cases}x=-5\\x=2\end{cases}}\) (ở đây lười kẻ bảng quá =((( )
b) \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow x^2-2x+x=2\Leftrightarrow x^2-x=2\)
\(\Leftrightarrow x\left(x-1\right)=2\Leftrightarrow\hept{\begin{cases}x=-1\\x=2\end{cases}}\) (bạn kẻ bảng ra các ước của 2 là thấy)
:v lời giải bài 1 đang chờ duyệt. Mình giải tiếp bài 2
Bài 2
a) \(2x\left(x^2-3\right)=2x^3-6x\)
b) \(x\left(x^2-2x+5\right)=x^3-2x^2+5x\)
c) \(\left(x+2y\right)\left(x+2y^2-5xy\right)\)
\(=x\left(x+2y^2-5xy\right)+2y\left(x+2y^2-5xy\right)\)
\(=x^2+2xy^2-5x^2y+2xy+4y^3-10xy^2\)
\(=4y^3+x^2-8xy^2-5x^2y+2xy\)
d)Tương tự bài c)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(20x^4y-25x^2y^2-3x^2y\right):5x^2y\)
\(=20x^4y:5x^2y-25x^2y^2:5x^2y-3x^2y:5x^2y\)
\(=4x^2-5y-\frac{3}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
a, \(\left(x^2-2x+3\right)\left(x-4\right)=0\)
TH1 : \(x^2-2x+3=0\)
\(\left(-2\right)^2-4.3=4-12< 0\)vô nghiệm
TH2 : \(x-4=0\Leftrightarrow x=4\)
b, \(\left(2x^2-3x-1\right)\left(5x+2\right)=0\)
TH1 : \(\left(-3\right)^2-4.\left(-1\right).2=9+8=17>0\)
\(\Rightarrow x_1=\frac{3-\sqrt{17}}{4};x_2=\frac{3+\sqrt{17}}{4}\)
TH2 ; \(5x+2=0\Leftrightarrow x=-\frac{2}{5}\)
c, đưa về hệ đc ko ?
d, \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)=0\)
TH1 : \(x=0,74...\) ( bấm máy cx ra )
TH2 : \(\left(-1\right)^2-4.2.4< 0\)vô nghiệm
KL : vô nghiệm
Bài 2 :
a, \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-6x^2+5x-6x+5-18x+12=10\)
Vậy biểu thức ko phụ thuộc vào biến
b, \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-yx^3-y^2x^2-y^3x-y^4-x^4y^4\)
\(=x^4-y^4-x^4y^4\)Vậy biểu thức phụ thuộc vào biến
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{x+2y}{8x^2y^5}-\frac{3x^2+2}{12x^4y^4}\)
=\(\frac{\left(x+2y\right)3x^2}{24x^4y^5}-\frac{\left(3x^2+2\right)2y}{24x^4y^5}\)
=\(\frac{3x^3+6x^2y}{24x^4y^5}-\frac{6x^2y+4y}{24x^4y^5}\)
=\(\frac{3x^3+6x^2y-6x^2y-4y}{24x^4y^5}\)
=\(\frac{3x^3-4y}{24x^4y^5}\)
b,\(\frac{y}{xy-5x^2}-\frac{15y-25x}{y^2-25x^2}\)
=\(\frac{y}{x\left(y-5x\right)}-\frac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\frac{\left(15y-25x\right)x}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2+5xy}{x\left(y-5x\right)\left(y+5x\right)}-\frac{15xy-25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)
=\(\frac{y-5x}{x\left(y+5x\right)}\)
c,\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x^3-x^2\right)+\left(2x-2\right)}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
=\(\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{\left(x+5\right)x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{4x-4-x^2+x}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
=\(\frac{-2}{x\left(x-1\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a nhé: 2x . x^2 - 2x . 7x - 2x . 3 = 2x^3 - 14x^2 - 6x
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(3x^2-2x\left(5+1.5x\right)+10\)
\(=3x^2-10x-3x^2+10\)
\(=-10x+10\)
b. \(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^3-2x^2+3x-4x^2+8x-12\)
\(=x^3-6x^2+11x-12\)
c. \(\left(5x+2\right)\left(2x^2-3x-1\right)\)
\(=10x^3-15x^2-5x+4x^2-6x-2\)
\(=10x^3-11x^2-11x-2\)
d. \(\left(25x^2+10xy+4y^2\right)\left(5x+2y\right)\)
\(=125x^3+50x^2y+20xy^2+50x^2y+10xy^2+6y^3\)
\(=125x^3+100x^2y+30xy^2+6y^3\)
e. \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=20x^5-4x^4+2x-12x^2-5x^4+x^3-2x^2+3x+10x^3-2x^2+4x-1\)
\(=20x^5-9x^4+9x-16x^2+11x^3+1\)
a) \(-5x\left(2x-5\right)=-5x.2x-\left(-5x\right).5=-10x^2+25x\)
b) \(\left(2x+3\right)\left(x-1\right)=2x.x-2x+3x-3.1=2x^2+x-3\)
c) \(\frac{20x^4y^3-25x^2y^3}{5x^2y^3}=\frac{5x^2y^3\left(4x^2-5\right)}{5x^2y^3}=4x^2-5\)