Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(\frac{1}{80}\right)^7>\left(\frac{1}{81}\right)^7=\left(\frac{1}{3^4}\right)7=\frac{1}{3^{28}}\)
\(\left(\frac{1}{213}\right)^6>\left(\frac{1}{243}\right)^6=\left(\frac{1}{3^5}\right)^6=\frac{1}{3^{30}}\)
Có : (1/80)^7 < (1/64)^7 = [(1/2)^6]^7 = (1/2)^42
(1/213)^6 > (1/218)^6 = [(1/2)^7]^6 = (1/2)^42
=> (1/80)^7 < (1/213)^6
Tk mk nha
a, \(A=\frac{1}{10}+\frac{1}{40}+...+\frac{1}{340}\)
\(\Leftrightarrow A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{17.20}\)
\(\Leftrightarrow A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+....+\frac{3}{17.20}\right)\)
\(\Leftrightarrow A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(\Leftrightarrow A=\frac{1}{6}-\frac{1}{60}=\frac{3}{20}\)
b, \(2004^{10}+2004^9=2004^9\left(2014+1\right)=2014^9+2005\)
\(2015^{10}=2015^9.2015\)
-Vậy: \(2004^{10}+2004^9< 2005^{10}\)
b)Có \(63^7< 64^7\)
\(64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\Rightarrow63^7< 16^{12}\)
2. a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
b) \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)
\(37^{75}=\left(3^3\right)^{25}=27^{25}\)
Vì \(5041^{25}>27^{25}\Rightarrow71^{50}>37^{75}\)
c) \(\frac{201201}{202202}=\frac{201201:1001}{202202:1001}=\frac{201}{202}\)
\(\frac{201201201}{202202202}=\frac{201201201:1001001}{202202202:1001001}=\frac{201}{202}\)
Vì \(\frac{201}{202}=\frac{201}{202}\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)
ta có : (1/35)^7 giữ nguyên
(1/15)^9=[(1/15)^2]^7=(1/3375)^7
vì ^7=^7 . Mà 35<3375 =>1/35>1/3375
=>(1/35)^7>(1/3375)^7 => (1/35)^7>(1/15)^9
Vậy (1/35)^7>(1/15)^9
a) Ta thấy B < 1 và 9 > 0 nên ta có: \(B< \frac{10^{2002}+1+9}{10^{2003}+1+9}\)
\(< \frac{10^{2002}+10}{10^{2003}+10}\)
\(< \frac{10\left(10^{2001}+1\right)}{10\left(10^{2002}+1\right)}\)
\(< \frac{10^{2001}+1}{10^{2002}+1}=A\)
Vậy \(A>B\)