Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x+\left(x-1\right)+\left(x-2\right)+...+\left(x-50\right)=255\\ x+x-1+x-2+...+x-50=255\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+50\right)\\ 51x-1275=255\\ 51x=1530\\ x=30\)
e)
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\\ x+x+1+x+2+...+x+30=1240\\ \left(x+x+x+...+x\right)+\left(1+2+3+...+30\right)=1240\\ 31x+465=1240\\ 31x=775\\ x=25\)
f)
\(\left(x-1\right)+\left(x-2\right)+...+\left(x-19\right)+\left(x-20\right)=-610\\ x-1+x-2+...+x-19+x-20=-610\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+20\right)=-610\\ 20x-210=-610\\ 20x=-400\\ x=-20\)
b) Ta có : \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{3}\right)^2=\left(\frac{1}{2}\right)^2\\\left(x-\frac{1}{3}\right)^2=\left(-\frac{1}{2}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{2}\\x-\frac{1}{3}=-\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=-\frac{1}{6}\end{cases}}\)
b) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{4}\\x-\frac{1}{3}=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{12}\\x=\frac{1}{12}\end{cases}}\)
d) \(\frac{x+5}{2}=\frac{8}{x+5}\)
\(\Rightarrow\left(x+5\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}x+5=16\\x+5=-16\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=-21\end{cases}}}\)
a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)
\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)
=>x=10
b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)
hay \(x\in\left\{0;1;2\right\}\)
c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow6-x=0\)
hay x=6
a) \(4.5^2-32:2^5\)
\(=4.25-2^5:2^5\)
\(=100-1\)
\(=99.\)
b) \(9.8.14+6.\left(-17\right)\left(-12\right)+19.\left(-4\right).18\)
\(=9.2.4.14+6.3.\left(-4\right)\left(-17\right)+76.18\)
\(=18.56+18.68+18.76\)
\(=18\left(56+68+76\right)\)
\(=18\left(132+68\right)\)
\(=18.200\)
\(=3600.\)
c) \(\left(\dfrac{-1}{2}\right)^3-2.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)+1\)
\(=\left(\dfrac{-1}{2}\right)\left[\left(\dfrac{-1}{2}\right)^2+2.\dfrac{-1}{2}+3\right]+1\)
\(=\left(\dfrac{-1}{2}\right)\left[\dfrac{1}{4}+\left(-1\right)+3\right]+1\)
\(\)\(=\left(\dfrac{-1}{2}\right)\left[\dfrac{1}{4}+2\right]+1\)
\(=\left(\dfrac{-1}{2}\right).\dfrac{9}{4}+1\)
\(=\dfrac{-9}{8}+1\)
\(=\dfrac{-1}{8}\)