\(\dfrac{ }{ }\)...+519
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

a)

\(x+\left(x-1\right)+\left(x-2\right)+...+\left(x-50\right)=255\\ x+x-1+x-2+...+x-50=255\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+50\right)\\ 51x-1275=255\\ 51x=1530\\ x=30\)

e)

\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\\ x+x+1+x+2+...+x+30=1240\\ \left(x+x+x+...+x\right)+\left(1+2+3+...+30\right)=1240\\ 31x+465=1240\\ 31x=775\\ x=25\)

f)

\(\left(x-1\right)+\left(x-2\right)+...+\left(x-19\right)+\left(x-20\right)=-610\\ x-1+x-2+...+x-19+x-20=-610\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+20\right)=-610\\ 20x-210=-610\\ 20x=-400\\ x=-20\)

10 tháng 7 2017

b) Ta có : \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{3}\right)^2=\left(\frac{1}{2}\right)^2\\\left(x-\frac{1}{3}\right)^2=\left(-\frac{1}{2}\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{2}\\x-\frac{1}{3}=-\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=-\frac{1}{6}\end{cases}}\)

10 tháng 7 2017

b) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{4}\\x-\frac{1}{3}=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{12}\\x=\frac{1}{12}\end{cases}}\)

d) \(\frac{x+5}{2}=\frac{8}{x+5}\)

\(\Rightarrow\left(x+5\right)^2=16\)

\(\Rightarrow\orbr{\begin{cases}x+5=16\\x+5=-16\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=-21\end{cases}}}\)

26 tháng 9 2017

hehehahaleuleuhehehahaleuleuhehehahaleuleuhehehahaleuleuvhehehahaleuleuhehehahaleuleuhehehahaleuleuhehehahaleuleu

20 tháng 3 2018

Bệnh!!! oe

a: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5+2^5+2^5+2^5+2^5}=2^x\)

\(\Leftrightarrow2^x=\dfrac{4^5}{3^5}\cdot\dfrac{6^5}{2^5}=4^5=2^{10}\)

=>x=10

b: \(\left(x-1\right)^{x+4}=\left(x-1\right)^{x+2}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)

\(\Leftrightarrow x\left(x-1\right)^{x+2}\cdot\left(x-2\right)=0\)

hay \(x\in\left\{0;1;2\right\}\)

c: \(6\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)

\(\Leftrightarrow5\cdot\left(6-x\right)^{2003}=0\)

\(\Leftrightarrow6-x=0\)

hay x=6

20 tháng 11 2017

Ê Hưng nhớ tau ko .Hạ đây

18 tháng 4 2018

a) \(4.5^2-32:2^5\)

\(=4.25-2^5:2^5\)

\(=100-1\)

\(=99.\)

b) \(9.8.14+6.\left(-17\right)\left(-12\right)+19.\left(-4\right).18\)

\(=9.2.4.14+6.3.\left(-4\right)\left(-17\right)+76.18\)

\(=18.56+18.68+18.76\)

\(=18\left(56+68+76\right)\)

\(=18\left(132+68\right)\)

\(=18.200\)

\(=3600.\)

c) \(\left(\dfrac{-1}{2}\right)^3-2.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)+1\)

\(=\left(\dfrac{-1}{2}\right)\left[\left(\dfrac{-1}{2}\right)^2+2.\dfrac{-1}{2}+3\right]+1\)

\(=\left(\dfrac{-1}{2}\right)\left[\dfrac{1}{4}+\left(-1\right)+3\right]+1\)

\(\)\(=\left(\dfrac{-1}{2}\right)\left[\dfrac{1}{4}+2\right]+1\)

\(=\left(\dfrac{-1}{2}\right).\dfrac{9}{4}+1\)

\(=\dfrac{-9}{8}+1\)

\(=\dfrac{-1}{8}\)

3 tháng 7 2018

1)
\(=\dfrac{\left(2.3\right)^{20}.\left(5^2\right)^{19}}{\left(2^3\right)^7.\left(3^2\right)^{10}.\left(5^3\right)^{13}}\)
\(=\dfrac{2^{20}.3^{20}.5^{38}}{2^{21}.3^{20}.5^{39}}\)
\(=\dfrac{1}{2.5}\)
\(=\dfrac{1}{10}\)