Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
) \(\dfrac{x^3+8y^3}{2y+x}\)
\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)
\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)
\(=x^2+2xy+4y^2\)
b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)
\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)
\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)
\(=\dfrac{3a-1}{2\left(a-4\right)}\)
c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)
\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2}\)
d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)
\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)
\(=x^2-10x+25+7x+14-x^2-2x\)
\(=39-5x\)
e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)
\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)
\(=\dfrac{3x+2x+1}{x-2}\)
\(=\dfrac{5x+1}{x-2}\)
h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)
\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
a) Có lẽ câu này sai đề rồi. Dấu chia phải là dấu nhân chứ?
Mình sửa đề luôn nhé.
\(15\dfrac{1}{4}.\left(-\dfrac{7}{5}\right)-25\dfrac{1}{4}.\left(-\dfrac{7}{5}\right)\)
= \(-\dfrac{7}{5}.\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right)\)
= \(-\dfrac{7}{5}.\left(\dfrac{61}{4}-\dfrac{101}{4}\right)\)
= \(-\dfrac{7}{5}.\left(-10\right)\)
= \(14\)
b) \(38-2y=\dfrac{4}{3}\)
\(2y=38-\dfrac{4}{3}=\dfrac{110}{3}\Rightarrow y=\dfrac{55}{3}\)
\(x^3-y^3-36xy\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-36xy\)
\(=12^3+36xy-36xy\)
\(=1728\)
6)x4 - x3- 10x2+2x+4=0
<=>x4 - x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)
=>(x2-3x-2)(x2+2x-2)=0
Th1:x2-3x-2=0
denta(-3)2-(-4(1.2))=17
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)
Th2:x2+2x-2=0
denta:22-(-4(1.2))=12
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)
=>x=-căn bậc hai(3)-1,
x=3/2-căn bậc hai(17)/2,
x=căn bậc hai(3)-1,
x=căn bậc hai(17)/2+3/2
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
\(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)
bài 2 áp dụng hằng đẳng thức bạn nhé
bài 3\(A=\left(x^3+3x^2+3x+1\right)+5\)
\(=\left(x+1\right)^3+5\) thay x=19 vào ta được
\(A=20^3+5=8005\)
\(B=\left(x^3-3x^2+3x-1\right)+1\)
\(=\left(x-1\right)^3+1\)
thay x=11 vào ta được
\(B=\left(11-1\right)^3+1=10^3+1=1001\)
Câu 1:
\(\dfrac{2^{35}.45^{25}.13^{22}.35^{16}}{9^{26}.65^{22}.28^{17}.25^9}\)
\(=\dfrac{2^{35}.9^{25}.5^{25}.13^{22}.7^{16}.5^{16}}{9^{26}.13^{22}.5^{22}.2^{17}.2^{17}.7^{17}.5^9.5^9}\)
Bạn rút gọn sẽ còn lại:
\(=\dfrac{2.5}{7.9}=\dfrac{10}{63}\)
Câu 4:
\(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)\(K=\left(x^2y\right)^2-2.x^2y.3+3^2-\left[\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y^2-y^3\right]+6xy^3-x^4y^2+8x^3-6x^2y-y^3\)\(K=x^4y^2-6x^2y+9-8x^3+12x^2y-6xy^2+y^3+6xy^2-x^4y^2+8x^3-6x^2y-y^3\)\(K=9\)