Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(=\sqrt{5}-2\)
b: \(=2\sqrt{3}+4\sqrt{3}-5\sqrt{3}-9\sqrt{3}=-8\sqrt{3}\)
c: \(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2\sqrt{2}}=\sqrt{16-8}=2\sqrt{2}\)
d: \(=\sqrt{2}+1-2+\sqrt{2}=2\sqrt{2}-1\)
e: \(=\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}-\dfrac{6+2\sqrt{5}}{4}\)
\(=\dfrac{16-3-\sqrt{5}}{2}=\dfrac{13-\sqrt{5}}{2}\)
f: \(=\sqrt{5\sqrt{3+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{5\sqrt{3+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3+5\left(5-\sqrt{3}\right)}}\)
\(=\sqrt{5\sqrt{3+25-5\sqrt{3}}}\)
\(=\sqrt{5\sqrt{28-5\sqrt{3}}}\)
Lời giải:
a) Ta có:
\(14-6\sqrt{5}=14-2\sqrt{45}=9+5-2\sqrt{9.5}=(\sqrt{9}-\sqrt{5})^2=(3-\sqrt{5})^2\)
\(\Rightarrow \sqrt{14-6\sqrt{5}}=3-\sqrt{5}\)
\(6+2\sqrt{5}=5+1+2\sqrt{5.1}=(\sqrt{5}+1)^2\)
\(\Rightarrow \sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)
Do đó: \(\sqrt{14-6\sqrt{5}}+\sqrt{6+2\sqrt{5}}=3-\sqrt{5}+\sqrt{5}+1=4\)
b)
\(\frac{\sqrt{10}+10}{1+\sqrt{10}}-\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}=\frac{\sqrt{10}(1+\sqrt{10})}{1+\sqrt{10}}-\frac{\sqrt{10}(\sqrt{5}-\sqrt{2})}{\sqrt{5}-\sqrt{2}}\)
\(=\sqrt{10}-\sqrt{10}=0\)
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
3: \(\sqrt{12-3\sqrt{7}}-\sqrt{12-3\sqrt{7}}=0\)
4: \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
\(=-2\sqrt{2}\)
6: \(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
\(=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}\)
\(=-4\sqrt{3}\)
a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=-2
b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)
c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)
\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)
\(\left(7+\sqrt{14}\right).\sqrt{9-2\sqrt{14}}\)
\(\Leftrightarrow\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right).\sqrt{\left(\sqrt{7}-\sqrt{2}\right)^2}\)
\(\Leftrightarrow\sqrt{7}\left(\sqrt{7}+\sqrt{2}\right).\left(\sqrt{7}-\sqrt{2}\right)\)
\(\Leftrightarrow\sqrt{7}\left(7-2\right)\)
\(\Leftrightarrow5\sqrt{7}\)
\(\sqrt{2}.\sqrt{7-3\sqrt{5}}\)
\(\Leftrightarrow\sqrt{2\left(7-3\sqrt{5}\right)}\)
\(\Leftrightarrow\sqrt{14-6\sqrt{5}}\)
\(\Leftrightarrow\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(\Leftrightarrow3-\sqrt{5}\)
1.
\(\sqrt{14+6\sqrt{5}}-\sqrt{\dfrac{\sqrt{5}-2}{\sqrt{5}+2}}\)
=\(\sqrt{9+6\sqrt{5}+5}-\dfrac{\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+2}}\)
=\(\sqrt{\left(3+\sqrt{5}\right)^2}-\dfrac{\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}}{\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}+2\right)}}\)
= \(3+\sqrt{5}-\dfrac{\sqrt{5-4}}{\sqrt{\left(\sqrt{5}+2\right)^2}}\)
= \(\dfrac{3\left(\sqrt{5}+2\right)}{\sqrt{5+2}}+\dfrac{\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}+2}-\dfrac{1}{\sqrt{5}+2}\)
=\(\dfrac{5\sqrt{5}+10}{\sqrt{5}+2}=\dfrac{5\left(\sqrt{5}+2\right)}{\sqrt{5}+2}=5\)
2, \(\sqrt{4x+8}+\sqrt{9x+18}-\sqrt{9}=\sqrt{16x+32}\)
⇔\(\sqrt{4\left(x+2\right)}+\sqrt{9\left(x+2\right)}-3=\sqrt{16\left(x+2\right)}\)
⇔\(2\sqrt{x+2}+3\sqrt{x+2}-4\sqrt{x+2}=3\)
\(\Leftrightarrow\sqrt{x+2}=3\)
⇔\(x+2=9\)
⇔x=7
a: \(=\sqrt{5}-3\sqrt{5}-4\sqrt{3}+15\sqrt{3}=-2\sqrt{5}+11\sqrt{3}\)
b: \(=3\sqrt{10}-\sqrt{5}+6-\sqrt{2}\)
c; \(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}=-11\sqrt{3}+3\sqrt{2}\)
d: \(=3-\sqrt{3}+\sqrt{3}-1=2\)
f: \(=\sqrt{10}-\sqrt{10}-2-2\sqrt{10}=-2-2\sqrt{10}\)
1.
a, \(2\sqrt{18}-4\sqrt{50}-3\sqrt{32}=6\sqrt{2}-20\sqrt{2}-12\sqrt{2}=-2\sqrt{2}\)
b, \(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\sqrt{\left(\sqrt{5}-3\right)^2}+\sqrt{\left(\sqrt{5}+3\right)^2}\)
\(=\left|\sqrt{5}-3\right|+\left|\sqrt{5}+3\right|\)
\(=-\sqrt{5}+3+\sqrt{5}+3=6\)
c, \(\dfrac{\sqrt{10}+10}{1+\sqrt{10}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}=\dfrac{\sqrt{10}\left(1+\sqrt{10}\right)}{1+\sqrt{10}}-\dfrac{\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}\)
\(=\sqrt{10}-\sqrt{10}=0\)
2.
ĐK: \(x\in R\)
\(\sqrt{9x^2-30x+25}=5\)
\(\Leftrightarrow\sqrt{\left(3x-5\right)^2}=5\)
\(\Leftrightarrow\left|3x-5\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=5\\3x-5=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=0\end{matrix}\right.\)
Vậy ...
Nếu em thấy các câu hỏi do lag mà bị gửi đúp (tức là rất nhiều câu hỏi giống nhau xuất hiện cùng 1 chỗ) thì xóa giúp mình nhé cho đỡ vướng. Nhưng nhớ để lại 1 câu. Cảm ơn em.