K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

câu 2:

9x^2-6x+6>0

ta có (3x)^2-2.3.x+1+5

= (3x-1)^2+5

vì (3x-1)^2 lớn hơn hoặc bằng 0

=> (3x-1)^2+5>0 (đpcm)

29 tháng 10 2017

Câu 1 : Rút gọn biểu thức:

(3x -1)2 + 2 (3x -1) (2x + 1) + (2x + 1)2

= (3x-1+2x+1)^2=25x^2

28 tháng 8 2017

a, (4x-3)(3x+2)-(6x+1)(2x-5)+1

=12x2-8x-9x+6-12x2+30x-2x+5+1

=11x+12

b, (3x+4)2+(4x-1)2+(2+5x)(2-5x)

=9x2+24x+16+16x2-8x+1+4-25x2

=16x+21

c, (2x+1)(4x22x+1)+(2-3x)(4+6x+9x2)-9

=8x3+1+8-27x3-9

=-19x3

14 tháng 9 2019

swingrock có thể giải thik rõ hơn đc ko ạ

3 tháng 10 2017

a) theo bài, ta có:

9x2 - 6x + 2 + y2

= (9x2 - 6x + y2) + 2

= (3x - y)2 + 2

vì (3x - y)2 \(\ge0\forall x,y\in R\)

=> (3x - y)2 + 2 \(\ge\) 2 \(\forall\)x, y \(\in\) R

=> (3x - y)2 + 2 > 0

hay 9x2 - 6x + 2 + y2 > 0

b) làm t.tự

c) theo bài ta có:

A= 2x2 + 4x - 1

= 2(x2 + 2x + 1) - 3

= 2(x + 1)2 - 3

vì 2(x + 1)2\(\ge\) 0 \(\forall x\in R\)

=>2(x + 1)2 - 3 \(\ge\) -3 \(\forall x\in R\)

=> GTNN của A bằng -3

c) 5x2 - 6xy + y2

= (9x2 - 6xy + y2)- 4x2

= (3x - y)2 - 4x2

= (3x - y - 4x)(3x - y + 4x)

= -(x + y)(7x - y)

mik chỉ làm đc đến đây thôi, vì mik lười bấm máy lắm, nhưng có j ủng hộ mik nha

29 tháng 9 2018

làm cái này dài lắm nên mk sẽ làm riêng từng bài nha! 
\(1,a,\left(2x-3\right)^2-4\left(x+1\right)\left(x-1\right)=4x^2-12x+9-4\left(x^2-1\right)\)

                                                                            \(=4x^2-12x+9-4x^2+4\)

                                                                              \(=-12x+13\)

  \(b,x\left(x^2-2\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3-2x-\left(x^3-1\right)\)

                                                                                 \(=-2x+1\)

29 tháng 9 2018

1, rút gọn :

(2x-3)2-4(x+1)(x-1)

=(2x-3)-4(x2-1)

21 tháng 6 2017

B =  x2 + 4x + 6
   = (x2 + 4x + 4) + 2
   = (x + 2)2 + 2 > 0

D =  x2 + x + 1
   = (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
   = (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0

F =  2x2 + 4x + 3
   = (2x2 + 4x + 2) + 1
   = (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0

H =  4x2 + 4x + 2
   = (4x2 + 4x + 1) + 1
   = (2x + 1)2 + 1 > 0

K =  4x2 + 3x + 2
   = (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
   = (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0

L =  2x2 + 3x + 4
   = (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
   = (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0

Vậy các biểu thức trên luôn dương với mọi x

21 tháng 6 2017

\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)

\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)

Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x

23 tháng 8 2018

Bài a:

1) \(x^2+4y^2-4x-4y+2016\)

\(=\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)+2011\)

\(=\left(x-2\right)^2+\left(2y-1\right)^2+2011\)

\(\left(x-2\right)^2\ge0\)

\(\left(2y-1\right)^2\ge0\)

\(2011>0\)

\(\Rightarrow\left(x-2\right)^2+\left(2y-1\right)^2+2011>0\)

Vậy biểu thức trên luôn dương với mọi giá trị của biến

2) \(4x^2+4xy+17y^2-8y+1\)

\(=\left(4x^2+4xy+y^2\right)+\left(16y^2-8y+1\right)\)

\(=\left(2x+y\right)^2+\left(4y-1\right)^2\)

\(\left(2x+y\right)^2\ge0\)

\(\left(4y-1\right)^2\ge0\)

\(\Rightarrow\left(2x+y\right)^2+\left(4y-1\right)^2\ge0\)

Vậy biểu thức trên luôn dương với mọi giá trị của biến

3) \(2x^2-5x+13\)

\(=2\left(x^2-\dfrac{5}{2}x+\dfrac{13}{2}\right)\)

\(=2\left(x^2-2.x.\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{25}{16}+\dfrac{13}{2}\right)\)

\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{79}{8}\)

\(2\left(x-\dfrac{5}{4}\right)^2\ge0\)

\(\dfrac{79}{8}>0\)

\(\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{79}{8}>0\)

Vậy biểu thức trên luôn dương với mọi giá trị của biến x

Bài b:

1) \(3x^2+y^2+10x-2xy+26=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+26\right)=0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x^2+5x+13\right)=0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x^2+2.x.\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{25}{4}+13\right)=0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{27}{2}=0\)

\(\left(x-y\right)^2\ge0\)

\(2\left(x+\dfrac{5}{2}\right)^2\ge0\)

\(\dfrac{27}{2}>0\)

\(\Rightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{27}{2}>0\)

Vậy không có các số x,y thỏa mãn đẳng thức trên

2) \(3x^2+6y^2-12x-20y+40=0\)

\(\Rightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y\right)+40=0\)

\(\Rightarrow3\left(x^2-4x+4\right)+6\left(y^2-\dfrac{3}{10}y\right)+28=0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y^2-2.y.\dfrac{3}{20}+\dfrac{9}{400}-\dfrac{9}{400}\right)+28=0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2-\dfrac{27}{200}+28=0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2+\dfrac{5573}{200}=0\)

\(3\left(x-2\right)^2\ge0\)

\(6\left(y-\dfrac{3}{20}\right)^2\ge0\)

\(\dfrac{5573}{200}>0\)

\(\Rightarrow3\left(x-2\right)^2+6\left(y-\dfrac{3}{20}\right)^2+\dfrac{5573}{200}>0\)

Vậy biểu thức trên không có giá trị x,y thỏa mãn

23 tháng 8 2018

Cảm ơn b nhiều đúng lúc mk cần gấp