Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: Để (d1) cắt (d2) thì \(m-1\ne3-m\)
=>\(2m\ne4\)
=>\(m\ne2\)
b: Thay m=0 vào (d1), ta được:
\(y=\left(0-1\right)x+2=-x+2\)
Thay m=0 vào (d2), ta được:
\(y=\left(3-0\right)x-2=3x-2\)
Vẽ đồ thị:
c: Phương trình hoành độ giao điểm là:
3x-2=-x+2
=>3x+x=2+2
=>4x=4
=>x=1
Thay x=1 vào y=3x-2, ta được:
y=3*1-2=3-2=1
d:
Khi m=0 thì (d2): y=3x-2
Gọi \(\alpha\) là góc tạo bởi (d2): y=3x-2 với trục Ox
y=3x-2 nên a=3
\(tan\alpha=a=3\)
=>\(\alpha\simeq72^0\)
Câu 3:
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\)
b: Ta có: AC//OM
OM\(\perp\)AB
Do đó: AB\(\perp\)AC
=>ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
mà ΔABC nội tiếp (O)
nên O là trung điểm của BC
=>B,O,C thẳng hàng
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)CM tại E
Xét ΔMBC vuông tại B có BE là đường cao
nên \(ME\cdot MC=MB^2\)(3)
Xét ΔMBO vuông tại B có BH là đường cao
nên \(MH\cdot MO=MB^2\left(4\right)\)
Từ (3) và (4) suy ra \(ME\cdot MC=MH\cdot MO\)
Gọi số câu trả lời đúng ở mỗi phần lần lượt là \(a,b\)câu, \(a,b\inℕ^∗;a\le8;b\le10\).
Số câu trả lời sai ở phần A là \(10-2-a=8-a\)(câu).
Tổng số điểm Nam đạt được là:
\(4a-\left(8-a\right)+6b=49\)
\(\Leftrightarrow5a+6b=57\)
Ta có: \(6\equiv1\left(mod5\right)\Rightarrow6b\equiv b\left(mod5\right)\)mà \(57\equiv2\left(mod5\right)\)nên \(b\equiv2\left(mod5\right)\)
do đó \(b=2\)hoặc \(b=7\).
Thử \(2\)giá trị trên chỉ thu được một nghiệm thỏa mãn là \(\left(a,b\right)=\left(3,7\right)\).
Vậy số câu trả lời đúng của Nam ở mỗi phần lần lượt là \(3,7\)câu.
Anh Vi Cá Đuối báo trc là bn ấy lm sai r nha !!
NLPT ai cho chuyển \(\sqrt{a}-1\) lên hay vậy lỡ âm sao!!
VD: \(-2>-3\Leftrightarrow\frac{2}{-1}>\frac{3}{-1}\Leftrightarrow2>3\left(vl\right)\)
báo lun là mk hơi sai ở đkxd nha !! x ≥ 0 ms đúng !!
Bài 1:
2:
a) Ta có: \(M=\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
\(=\left(\frac{a+1+\sqrt{a}}{a+1}\right):\left(\frac{a+1}{\left(a+1\right)\left(\sqrt{a}-1\right)}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a+1+\sqrt{a}}{a+1}:\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)
\(=\frac{a+\sqrt{a}+1}{a+1}:\frac{\sqrt{a}-1}{a+1}\)
\(=\frac{a+\sqrt{a}+1}{\sqrt{a}-1}\)
b) Để M>1 thì \(\frac{a+\sqrt{a}+1}{\sqrt{a}-1}>1\)
\(\Leftrightarrow a+\sqrt{a}+1>\sqrt{a}-1\)
\(\Leftrightarrow a+\sqrt{a}+1-\sqrt{a}+1>0\)
\(\Leftrightarrow a+2>0\)
\(\Leftrightarrow a>-2\)
mà \(a\ge0\left(đkxđ\right)\)
nên \(a\ge0\)
Vậy: Khi a không âm và a\(\ne\)1 thì M>1