Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tổng 2 góc của tam giác là 180 độ
Giả sử có tam giác có 2 góc vuông
=>Tổng của 2 góc đó là:
90+90=180 độ
=>Số đo của góc còn lại là:
180-180=0 độ
Vì số đo của góc luôn lớn hơn 0
=>Vô lí
Vậy 1 tam giác không thể có 2 góc vuông

A B C H D E
A)XÉT \(\Delta ABH\)VÀ \(\Delta ADH\)CÓ
\(BH=HD\left(gt\right);\widehat{AHB}=\widehat{AHD}=90^o;\)AH LÀ CẠNH CHUNG
=> \(\Delta ABH\)=\(\Delta ADH\)(C-G-C)
=> AB = AD ( hai cạnh tương ứng )
=> \(\Delta ABD\)là tam giác cân
nhắc lại kiến thức: mà trong tam giác cân có một góc bằng 60 độ suy ra tam giác đó là tam giác đều
MÀ \(\widehat{ABH}=60^o\)hay \(\widehat{ABD}=60^o\)
=> \(\Delta ABD\)là tam giác đều
B) XÉT \(\Delta ABH\)CÓ
\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\Leftrightarrow\widehat{BAH}+60^o+90^o=180^o\Leftrightarrow\widehat{BAH}=180^o-\left(60^o+90^o\right)=30^o\)
vì \(\Delta ABH\)=\(\Delta ADH\)(cmt)
\(\Rightarrow\widehat{BAH}=\widehat{DAH}=30^o\)
có \(\widehat{BAH}+\widehat{DAH}+\widehat{DAC}=90^o\Leftrightarrow30^o+30^o+\widehat{DAC}=90^o\Leftrightarrow\widehat{DAC}=90^o-\left(30^o+30^o\right)=30^o\)
ta có \(\widehat{AHD}+\widehat{EDH}=90^o+90^o=180^o\)
hai góc này ở vị trí trong cùng phía bù nhau
=> AH // DE
=>\(\widehat{HAD}=\widehat{ADE}=30^o\)
ta có \(\widehat{DAC}=\widehat{ADE}\)hay \(\widehat{EAD}=\widehat{ADE}\)
=> \(\Delta AED\)là tam giác cân
A B C H D E F
c) xét \(\Delta ABC\)CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Leftrightarrow90^o+60^o+\widehat{C}=180^o\Leftrightarrow\widehat{C}=180^o-\left(90^o+60^o\right)=30^o\)
xét \(\Delta AHC\)VÀ \(\Delta CFA\)CÓ
AC LÀ CẠNH CHUNG
\(\widehat{H}=\widehat{F}=90^o\)
\(\widehat{ACH}=\widehat{CAF}=30^o\)
=> \(\Delta AHC\)=\(\Delta CFA\)(ch-gn)
\(\Rightarrow AH=CF\left(1\right)\)
vì \(\Delta AHC\)=\(\Delta CFA\)(cmt)
\(\Rightarrow HC=FA\)
xét \(\Delta HAF\)VÀ \(\Delta FCH\)CÓ
\(AF=CH\left(cmt\right);\widehat{HAF}=\widehat{FCH}=30^o;HA=FC\left(cmt\right)\)
=>\(\Delta HAF\)=\(\Delta FCH\)(c-g-c)
\(\Rightarrow\widehat{AFH}=\widehat{CHF}\)HAY \(\widehat{AFH}=\widehat{DHF}\)
XÉT \(\Delta HAF\)CÓ
\(\widehat{HAF}+\widehat{AHD}+\widehat{DHF}+\widehat{AFH}=180^o\)
vì\(\widehat{AFH}=\widehat{DHF}\)
\(\Leftrightarrow30^o+90^o+2\widehat{AFH}=180^o\)
\(\Leftrightarrow2\widehat{AFH}=60^o\)
\(\Leftrightarrow\widehat{AFH}=30^o\)
xét \(\Delta HAF\)có
\(\widehat{AFH}=\widehat{HAF}=30^o\)
=>\(\Delta HAF\)cân tại H
=> \(AH=HF\left(2\right)\)
TỪ (1) VÀ (2)
\(\Rightarrow AH=HF=FC\left(đpcm\right)\)

A B C D E F = = =
a) Xét \(\Delta\)ADE có:
ADE+DAE+AED=180o (đl tổng ba góc \(\Delta\))
\(\Rightarrow\)AED=180o-90o-60o
\(\Rightarrow\)AED=30o
Ta có:
AD=\(\frac{1}{2}\)AE (t/c cạnh đối diện góc 30o trong \(\Delta\)vuông) (1)
Mà AD=\(\frac{1}{3}\)AB
\(\Rightarrow\)AD=\(\frac{1}{3}\)(AD+BD)
\(\Rightarrow\)AD=\(\frac{1}{3}\)AD+\(\frac{1}{3}\)BD
\(\Rightarrow\)AD-\(\frac{1}{3}\)AD=\(\frac{1}{3}\)BD
\(\Rightarrow\frac{2}{3}\)AD=\(\frac{1}{3}\)BD
\(\Rightarrow\)2AD=BD
\(\Rightarrow\)AD=\(\frac{1}{2}\)BD (2)
Từ (1) và (2)
\(\Rightarrow\)AE=BD
\(\Rightarrow\)AC-AE=AB-BD (AB=AC \(\Delta\)ABC đều)
\(\Rightarrow\)EC=AD
Xét \(\Delta\)ADE và \(\Delta\)CEF có:
ADE=CÈ (=90o)
EC=AD (cmt)
EAD=ECF (=60o)
\(\Rightarrow\Delta\)ADE=\(\Delta\)CEF (g.c.g)
\(\Rightarrow\)AE=CF (2 cạnh tương ứng)
\(\Rightarrow\)AC-AE=BC-CF (AC=BC \(\Delta\)ABC đều)
\(\Rightarrow\)EC=BF
Mà EC=AD
\(\Rightarrow\)BF=AD
Xét \(\Delta\)ADE và \(\Delta\)BFD có:
AD=BF (cmt)
DAE=DBF (=60o)
AE=BD (cmt)
\(\Rightarrow\Delta\)ADE=\(\Delta\)BFD (c.g.c)
\(\Rightarrow\)ADE=BFD (2 góc tương ứng)
Mà ADE=90o
\(\Rightarrow\)BFD=90o
\(\Rightarrow\)DF \(\perp\)BC (đcm)
b) Vì \(\Delta\)ADE=\(\Delta\)CÈ
\(\Delta\)ADE=\(\Delta\)BFD
\(\Rightarrow\Delta\)ADE=\(\Delta\)CEF=\(\Delta\)BFD
\(\Rightarrow\)DE=EF=FD (cạnh tương ứng)
\(\Rightarrow\Delta\)DEF đều (đpcm)
kho a nha
được sử dụng hình học phi Ơ-clít nhé