Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Lấy \(x_1;x_2\in\left(-4;0\right)\)
Ta có: \(y_1-y_2=-2x^2_1-7-\left(-2x^2_2-7\right)=-2\left(x_1-x_2\right)\left(x_1+x_2\right)\)
Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)
Do \(x_1;x_2\in\left(-4;0\right)\Rightarrow-8< x_1+x_2< 0\Rightarrow I>0\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(-4;0\right)\)
Lấy \(x_1;x_2\in\left(3;10\right)\)
Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)
Do \(x_1;x_2\in\left(3;10\right)\Rightarrow6< x_1+x_2< 20\Rightarrow I< 0\)
\(\Rightarrow\) Hàm số nghịch biến trên \(\left(3;10\right)\)
2.
Hàm số \(y=mx^2+2x+1\left(P\right)\)
\(A\left(-1;3\right)\in\left(P\right)\Leftrightarrow3=m-2+1\Leftrightarrow m=4\)
Vậy \(m=4\)
hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng .
đặc BM : \(2x-y+1=0\) và CN : \(x+y-4=0\) là 2 trung tuyến của tam giác ABC
đặc B\(\left(x;y\right)\) , ta có N \(\left(\dfrac{x-2}{2};\dfrac{y+3}{2}\right)\) và \(\left\{{}\begin{matrix}B\in BM\\N\in CN\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\\dfrac{x-2}{2}+\dfrac{y+3}{2}-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
vậy phương trình đường thẳng chứa cạnh AB là : \(2x-4y+16=0\) \(\Leftrightarrow x-2y+8=0\)
tương tự ta có phương trình đường thẳng chứa cạnh AC là : \(2x+5y-11=0\) phương trình đường thẳng chứa cạnh BC là : \(4x+y-13=0\)
a/ Trục Ox nhận \(\left(1;0\right)\) là 1 vtcp
Gọi đường thẳng cần tìm là d', do d' vuông góc \(Ox\Rightarrow\) d' nhận \(\left(1;0\right)\) là 1 vtpt và \(\left(0;1\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=-1\\y=2+t\end{matrix}\right.\)
Không tồn tại ptct của d'
Pt tổng quát: \(1\left(x+1\right)+0\left(y-2\right)=0\Leftrightarrow x+1=0\)
b/ Mình viết pt một cạnh, 1 đường cao và 1 đường trung tuyến, phần còn lại tương tự bạn tự làm:
\(\overrightarrow{AB}=\left(2;-5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;2\right)\) là 1 vtpt
Phương trình AB:
\(5\left(x-1\right)+2\left(y-4\right)=0\Leftrightarrow5x+2y-13=0\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};-\frac{7}{2}\right)=\frac{7}{2}\left(1;-1\right)\)
\(\Rightarrow\) Đường thẳng AM nhận \(\left(1;1\right)\) là 1 vtpt
Phương trình trung tuyến AM:
\(1\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-5=0\)
Gọi CH là đường cao tương ứng với AB, do CH vuông góc AB nên đường thẳng CH nhận \(\left(2;-5\right)\) là 1 vtpt
Phương trình CH:
\(2\left(x-6\right)-5\left(y-2\right)=0\Leftrightarrow2x-5y-2=0\)
2) a) hình tự vẽ nhé
gọi tọa độ điểm D là \(D\left(x;y\right)\)
ta có : \(\overrightarrow{BC}\left(-1;-1\right)\) ; \(\overrightarrow{AD}=\left(x-2;y+1\right)\)
vì ABCD là hình chữ nhật \(\Rightarrow\overrightarrow{BC}=\overrightarrow{AD}\Rightarrow\left\{{}\begin{matrix}-1=x-2\\-1=y+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\) vậy ...
b) ĐK : \(-2\sqrt{2}\le x\le2\sqrt{2}\)
\(\sqrt{8-x^2}=x^2\) \(\Leftrightarrow x^4=8-x^2\) (bình phương 2 quế )
\(\Leftrightarrow x^4+x^2-8=0\Leftrightarrow\left[{}\begin{matrix}x^2=\frac{-1+\sqrt{33}}{2}\left(N\right)\\x^2=\frac{-1-\sqrt{33}}{2}\left(L\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{33}}{2}}\left(TMĐK\right)\) vậy ...
E chỉ bt sương sương Bài 1 a :((. Chắc ko đúng
\(\left\{{}\begin{matrix}x+y+z=3\\x-z=0\\z=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=3\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
1.
Vì \(y=\sqrt{2}\) là hàm hằng nên với mọi giá trị của \(x\) thì đều nhận \(\sqrt{2}\) là giá rị của \(y\)
\(\Rightarrow B\)
2. \(D\)
3.
Giải hệ \(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+2\right)\left(y+3\right)=\dfrac{1}{2}xy+50\\\dfrac{1}{2}\left(x-2\right)\left(y-2\right)=\dfrac{1}{2}xy-32\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=26\\y=8\end{matrix}\right.\)
\(\Rightarrow xy=208\Rightarrow A\)
4.
\(\overrightarrow{AM}.\overrightarrow{AN}=-a^2\)
5.
\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)
6. \(C\)
Câu 4: Đáp án
A. \(2a^2\) B.\(a^2\) C.\(\frac{1}{2}a^2\) D.\(\frac{-1}{2}a^2\)
Không có đáp án \(-a^2 \)