Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=4\)
\(\Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2=0\\\left(y-\dfrac{1}{y}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm1\end{matrix}\right.\)
a) \(\dfrac{4\left(x-4\right)}{12}\)-\(\dfrac{3x}{12}\)-\(\dfrac{12}{12}\) = 0
\(\dfrac{4x-16-3x-12}{12}=0\)
\(\dfrac{x-28}{12}\)\(=0\)
x - 28 = 0
x = 28
Vậy x = 28
2) \(\dfrac{x}{2}\)-\(\dfrac{x}{10}\)<\(\dfrac{1}{2}-\dfrac{1}{3}\)
<=>\(\dfrac{x}{2}\)-\(\dfrac{x}{10}\)<\(\dfrac{1}{6}\)
=>15x-3x<5
<=>12x<5
<=>x<\(\dfrac{5}{12}\)
=> S={x|x<\(\dfrac{5}{12}\)}
\(a.\Leftrightarrow\frac{5x^2+16}{\left(x+4\right)\left(x-4\right)}=\frac{\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}DKXD:x\ne4;-4\)
\(\Rightarrow5x^2+16=2x^2-8x-x+4+3x^2+12x-x-4\)
\(\Leftrightarrow2x=16\)
\(\Leftrightarrow x=8\)
\(b.\Leftrightarrow\frac{\left(y+1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12+\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}.DKXD:y\ne2;-2\)
\(\Rightarrow y^2+2y+y+2-5y+10=12+y^2-4\)
\(\Leftrightarrow-2y=-4\)
\(\Leftrightarrow y=2\)
1) \(\dfrac{x^2-4}{x^2+2x+1}:\dfrac{4-2x}{2x+2}=\dfrac{\left(x-2\right)\left(x+2\right)2\left(x+1\right)}{\left(x+1\right)^22\left(2-x\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x+1\right)}{-2\left(x-2\right)\left(x+1\right)\left(x+1\right)}=\dfrac{-\left(x+2\right)}{x+1}=\dfrac{-x-2}{x+1}\)
2) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)=\dfrac{x+1}{x+2}:\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x+3\right)\left(x+3\right)}{\left(x+2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}=\dfrac{x^2+6x+9}{x^2+4x+4}\)
a)
\(\dfrac{5x^2+16}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\) (\(x\ne\pm2\))
\(\Rightarrow\dfrac{5x^2+16}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=0\)
\(\Rightarrow\dfrac{5x^2+16-\left(2x^2-8x-x+4\right)-\left(3x^2+12x-x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)
\(\Rightarrow\dfrac{10x+16}{x^2-16}=0\)
=> 10x + 16 =0
=> 10x = -16
=> x = \(-\dfrac{8}{5}\)
b) \(x^2+2\sqrt{3}x-6=0\)
\(\Leftrightarrow\) \(x^2+2\sqrt{3}x+3-9=0\)
\(\Leftrightarrow\) \(\left(x+\sqrt{3}\right)^2-9=0\)
\(\Leftrightarrow\) \(\left(x+\sqrt{3}-3\right).\left(x+\sqrt{3}+3\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{array}{} x+\sqrt{3}-3=0 \\ x+\sqrt{3}+3=0 \end{array} \right.\)\(\Leftrightarrow\) \(\left[\begin{array}{} x= 3-\sqrt{3} \\ x= -3-\sqrt{3} \end{array} \right.\)
Vậy phương trình có tập nghiệm là S={\(3-\sqrt{3};-3-\sqrt{3}\)}
\(\Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=4-2-2\)
\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)
Với mọi x, y ta luôn có \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2\ge0\\\left(y-\dfrac{1}{y}\right)^2\ge0\end{matrix}\right.\)
=> \(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2\ge0\)
mà \(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2-1}{x}=0\\\dfrac{y^2-1}{y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1;x=-1\\y=1;y=-1\end{matrix}\right.\)
Vậy....
mk giải luôn đó nha
Giải:
Áp dụng BĐT AM-GM cho hai số dương, ta có:
\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
\(y^2+\dfrac{1}{y^2}\ge2\sqrt{y^2.\dfrac{1}{y^2}}=2\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}\ge4\)
Dấu "=" xảy ra khi:
\(x=y=\pm1\)
Vậy ...