\(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=4\)

giải hộ mìn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

\(\Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=4-2-2\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)

Với mọi x, y ta luôn có \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2\ge0\\\left(y-\dfrac{1}{y}\right)^2\ge0\end{matrix}\right.\)

=> \(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2\ge0\)

\(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\y-\dfrac{1}{y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2-1}{x}=0\\\dfrac{y^2-1}{y}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1;x=-1\\y=1;y=-1\end{matrix}\right.\)

Vậy....

mk giải luôn đó nha

17 tháng 6 2018

Giải:

Áp dụng BĐT AM-GM cho hai số dương, ta có:

\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(y^2+\dfrac{1}{y^2}\ge2\sqrt{y^2.\dfrac{1}{y^2}}=2\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}\ge4\)

Dấu "=" xảy ra khi:

\(x=y=\pm1\)

Vậy ...

Y
2 tháng 2 2019

\(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=4\)

\(\Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2=0\\\left(y-\dfrac{1}{y}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\y=\pm1\end{matrix}\right.\)

5 tháng 4 2017

Quy đồng mẫu,cho tử =0

30 tháng 3 2018

a) \(\dfrac{4\left(x-4\right)}{12}\)-\(\dfrac{3x}{12}\)-\(\dfrac{12}{12}\) = 0

\(\dfrac{4x-16-3x-12}{12}=0\)

\(\dfrac{x-28}{12}\)\(=0\)

x - 28 = 0

x = 28

Vậy x = 28

28 tháng 4 2018

2) \(\dfrac{x}{2}\)-\(\dfrac{x}{10}\)<\(\dfrac{1}{2}-\dfrac{1}{3}\)

<=>\(\dfrac{x}{2}\)-\(\dfrac{x}{10}\)<\(\dfrac{1}{6}\)

=>15x-3x<5

<=>12x<5

<=>x<\(\dfrac{5}{12}\)

=> S={x|x<\(\dfrac{5}{12}\)}

22 tháng 2 2019

\(a.\Leftrightarrow\frac{5x^2+16}{\left(x+4\right)\left(x-4\right)}=\frac{\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}DKXD:x\ne4;-4\)

\(\Rightarrow5x^2+16=2x^2-8x-x+4+3x^2+12x-x-4\)

\(\Leftrightarrow2x=16\)

\(\Leftrightarrow x=8\)

\(b.\Leftrightarrow\frac{\left(y+1\right)\left(y+2\right)-5\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}=\frac{12+\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}.DKXD:y\ne2;-2\)

\(\Rightarrow y^2+2y+y+2-5y+10=12+y^2-4\)

\(\Leftrightarrow-2y=-4\)

\(\Leftrightarrow y=2\)

29 tháng 11 2018

1) \(\dfrac{x^2-4}{x^2+2x+1}:\dfrac{4-2x}{2x+2}=\dfrac{\left(x-2\right)\left(x+2\right)2\left(x+1\right)}{\left(x+1\right)^22\left(2-x\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x+1\right)}{-2\left(x-2\right)\left(x+1\right)\left(x+1\right)}=\dfrac{-\left(x+2\right)}{x+1}=\dfrac{-x-2}{x+1}\)

2) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)=\dfrac{x+1}{x+2}:\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x+3\right)\left(x+3\right)}{\left(x+2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}=\dfrac{x^2+6x+9}{x^2+4x+4}\)

22 tháng 2 2019

a)

\(\dfrac{5x^2+16}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\) (\(x\ne\pm2\))

\(\Rightarrow\dfrac{5x^2+16}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=0\)

\(\Rightarrow\dfrac{5x^2+16-\left(2x^2-8x-x+4\right)-\left(3x^2+12x-x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)

\(\Rightarrow\dfrac{10x+16}{x^2-16}=0\)

=> 10x + 16 =0

=> 10x = -16

=> x = \(-\dfrac{8}{5}\)

15 tháng 4 2017

b) \(x^2+2\sqrt{3}x-6=0\)

\(\Leftrightarrow\) \(x^2+2\sqrt{3}x+3-9=0\)

\(\Leftrightarrow\) \(\left(x+\sqrt{3}\right)^2-9=0\)

\(\Leftrightarrow\) \(\left(x+\sqrt{3}-3\right).\left(x+\sqrt{3}+3\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{array}{} x+\sqrt{3}-3=0 \\ x+\sqrt{3}+3=0 \end{array} \right.\)\(\Leftrightarrow\) \(\left[\begin{array}{} x= 3-\sqrt{3} \\ x= -3-\sqrt{3} \end{array} \right.\)

Vậy phương trình có tập nghiệm là S={\(3-\sqrt{3};-3-\sqrt{3}\)}