Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: (3,0 điểm). Giải các phương trình:
a) \(3x+5=2x+2\).
\(\Leftrightarrow3x-2x=2-5\).
\(\Leftrightarrow x=-3\).
Vậy phương trình có tập nghiệm: \(S=\left\{-3\right\}\).
b) \(\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4}{x+1}+\frac{3}{x-2}\left(ĐKXĐ:x\ne-1;x\ne2\right)\).
\(\Leftrightarrow\frac{x-5}{\left(x+1\right)\left(x-2\right)}=\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\).
\(\Rightarrow x-5=4x-8+3x+3\).
\(\Leftrightarrow x-4x-3x=-8+3+5\).
\(\Leftrightarrow-6x=0\).
\(\Leftrightarrow x=0\)(thỏa mãn ĐKXĐ).
Vậy phương trình có tập nghiệm: \(S=\left\{0\right\}\).
c) \(\left|x-3\right|+1=2x-7\)
- Xét \(x-3\ge0\Leftrightarrow x\ge3\). Do đó \(\left|x-3\right|=x-3\). Phương trình trở thành:
\(x-3+1=2x-7\).
\(\Leftrightarrow x-2=2x-7\).
\(\Leftrightarrow x-2x=-7+2\).
\(\Leftrightarrow-x=-5\).
\(\Leftrightarrow x=5\)(thỏa mãn).
- Xét \(x-3< 0\Leftrightarrow x< 3\)Do đó \(\left|x-3\right|=3-x\). Phương trình trở thành:
\(3-x+1=2x-7\).
\(\Leftrightarrow4-x=2x-7\).
\(-x-2x=-7-4\).
\(\Leftrightarrow-3x=-11\).
\(\Leftrightarrow x=\frac{-11}{-3}=\frac{11}{3}\)(loại).
Vậy phương trình có tập nghiệm: \(S=\left\{5\right\}\).
Câu 2: (2,0 điểm).
a) \(5x-5>x+15\).
\(\Leftrightarrow5x-x>15+5\).
\(\Leftrightarrow4x>20\).
\(\Leftrightarrow x>5\).
Vậy bất phương trình có tập nghiệm: \(\left\{x|x>5\right\}\).
b) \(\frac{8-4x}{3}>\frac{12-x}{5}\).
\(\Leftrightarrow\frac{5\left(8-4x\right)}{15}>\frac{3\left(12-x\right)}{15}\).
\(\Leftrightarrow40-20x>36-3x\).
\(\Leftrightarrow-20x+3x>36-40\).
\(\Leftrightarrow-17x>-4\).
\(\Leftrightarrow x< \frac{4}{17}\)\(\Leftrightarrow x< 0\frac{4}{17}\).
\(\Rightarrow\)Số nguyên x lớn nhất thỏa mãn bất phương trình trên là: \(x=0\).
Vậy \(x=0\).
1 14-3x=-2+5x
<=>-3x-5x = -2-14
<=> -8x =-16
<=> x =-16/-8=2
mấy bạn ơi...các phương trình trên nó bị lặp lại nhak....ptrinh day ni:
a)\(14-3x=-2+5x\)
b) \(3\times\left(5x+2\right)-x\times\left(5x+2\right)=0\)
c) \(\frac{2x}{3}+\frac{3x-1}{6}=4-\frac{x}{3}\)
d) \(\frac{3-x}{x-2}+\frac{x+1}{x+2}=\frac{3x}{x^2-4}\)
Câu 3:
a: \(A=\left(\dfrac{1}{x+1}-\dfrac{2}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x+1}{1}\)
\(=\dfrac{x-1-2x-2+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{1}\)
\(=\dfrac{-3}{x-1}\)
b: Khi x=1 thì A không xác định
Khi x=2 thì \(A=\dfrac{-3}{2-1}=-3\)
1a)
\(\hept{\begin{cases}2x-2017=1\\12x-2017=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=2018\\12x=2018\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1009\\x=\frac{1009}{6}\end{cases}}\)
Em nghĩ là như vậy . Nếu có gì em sẽ sửa.
Gọi số thứ nhất là a ( 0 < a < 125 )
Số thứ hai là 4a
Ta có phương trình :
\(a+4a=125\)
\(\Leftrightarrow5a=125\)
\(\Leftrightarrow a=25\left(tm\right)\)
Vậy số thứ 1 là 25
Số thứ 2 = 25 x 4 = 100
Vậy ...
Câu 1 :
a) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{2}-5\)
\(\Leftrightarrow\dfrac{5x+2}{6}-\dfrac{16x-2}{6}=\dfrac{12x+6}{6}-\dfrac{30}{6}\)
\(\Leftrightarrow\dfrac{5x+2-16x+2}{6}=\dfrac{12x+6-30}{6}\)
\(\Leftrightarrow\dfrac{-11x+4}{6}=\dfrac{12x-24}{6}\)
\(\Rightarrow-66x+24=72x-144\)
\(\Rightarrow x=\dfrac{28}{23}\)
b) \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{4x+4}{x^2-4}\)
(ĐKXĐ \(x\ne\pm2\))
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x+4}{x^2-4}\)
\(\Leftrightarrow\dfrac{x^2+3x+2+x^2-3x+2}{x^2-4}=\dfrac{4x+4}{x^2-4}\)
\(\Rightarrow2x^2+4=4x+4\)
\(\Leftrightarrow2x^2-4x=0\)
\(\Leftrightarrow2x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=2\left(KTMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
c) \(\left|x+2016\right|=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2016=2x\left(x+2016\ge0\right)\\x+2016=-2x\left(x+2016< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2016\left(x\ge-2016\right)\left(TMĐK\right)\\x=-672\left(x< -2016\right)\left(KTMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{2016\right\}\)
Câu 4 :
Vì đáy của hình lăng trụ đứng là tam giác vuông.
Áp dụng định lý Pytago vào tam giác vuông, ta được cạnh còn lại bằng :
\(x^2=5^2+12^2\rightarrow x=13\left(cm\right)\)
Diện tích xung quanh của hình lăng trụ đó là :
\(S_{xq}=2p\cdot h=\left(5+12+13\right)\cdot8=240\left(cm^2\right)\)
Thể tích hình lăng trụ đó là :
\(V=S\cdot h=\dfrac{1}{2}\cdot5\cdot12\cdot8=240\left(cm^3\right)\)
3) 9h30phút-30phút=9h
Gọi x(km) là quãng đường từ A đến B (ĐK X>0)
Thời gian xe đi từ A đến B là \(\dfrac{X}{15}\)(h)
Thời gian xe đi từ B đến A là \(\dfrac{X}{12}\)(h)
Theo đề bài ta có phương trình :
\(\dfrac{x}{15}+\dfrac{x}{12}=9\)
Giải pt:\(\dfrac{X}{15}+\dfrac{x}{12}=9\Leftrightarrow\dfrac{4x}{60}+\dfrac{5x}{60}=\dfrac{540}{60}\Rightarrow4x+5x=540\Leftrightarrow9x=540\Leftrightarrow x=60\)
Vậy quãng đường từ A đến B là 60 km
\(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\Leftrightarrow15x-9x+6=45-10x+25\Leftrightarrow16x=64\Leftrightarrow x=4\)
Bài 3 :
a) Xét \(\Delta ABDvà\Delta CDB\) có :
\(\left\{{}\begin{matrix}\widehat{DAB}=\widehat{BCD}=90^o\\\dfrac{AD}{AB}=\dfrac{CB}{CD}\left(=\dfrac{3}{4}\right)\end{matrix}\right.\)
=> \(\Delta ABD\sim\Delta CBD\left(c.g.c\right)\) (1)
Xét \(\Delta ABDvà\Delta HBA\) có :
\(\left\{{}\begin{matrix}\widehat{DAB}=\widehat{AHB}=90^o\\\widehat{B}:chung\end{matrix}\right.\)
=> \(\Delta ABD\sim\Delta HBA\left(g.g\right)\) (2)
Từ (1) và (2) => \(\Delta AHB\sim\Delta BCD\left(\sim DAB\right)\)
b) Xét \(\Delta ADHvà\Delta BDA\) có :
\(\left\{{}\begin{matrix}\widehat{D}:Chung\\\widehat{DHA}=\widehat{DAB}=90^o\end{matrix}\right.\)
=> \(\Delta ADH\sim\Delta BDA\left(g.g\right)\)
\(=>\dfrac{AD}{BD}=\dfrac{DH}{DA}\)
=> \(AD^2=DH.BD\) (đpcm)
Bài 1:
a: =>5x-10=3x+3
=>2x=13
hay x=13/2
b: \(\Leftrightarrow2x\left(x-2\right)+3\left(x+1\right)=2\left(x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2x^2-4x+3x+3=2x^2-2x-4\)
=>-x+3=-2x-4
=>x=-7
c: =>2x+7=3 hoặc 2x+7=-3
=>2x=-4 hoặc 2x=-10
=>x=-2 hoặc x=-5
a) ta có: \(|4x^2-1|\ge0\forall x\)
\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)
Mà \(|4x^2-1|+3x|2x-1|=0\)
=> I4x^2-1I và 3xI2x-1I=0
=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0
=> 4x^2=1 và x=0 hoặc 2x=1
=> x^2=1/4 và x=0 hoặc x=1/2
=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2
Vậy x=\(\pm\frac{1}{2}\); x=0
2:
a: =>x-4>=0
=>x>=4
b: =>x+1>0
=>x>-1