\(\frac{x+2}{42}+\frac{x+4}{22}=\frac{x+5}{23}+\frac{x+3}{43}\)

câu 2 : 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

a ) Ta có : \(\frac{x+11}{10}+\frac{x+21}{20}+\frac{x+31}{30}=\frac{x+41}{40}+\frac{x+101}{5}\) 

\(\Leftrightarrow\left(\frac{x+11}{10}-1\right)+\left(\frac{x+21}{10}-1\right)+\left(\frac{x+31}{30}-1\right)=\left(\frac{x+41}{40}-1\right)+\left(\frac{x+101}{50}-2\right)\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}=\frac{x+1}{40}+\frac{x+1}{50}\)

\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}-\frac{x+1}{40}-\frac{x+1}{50}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)=0\)

Mà \(\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)\ne0\)

Nên x + 1 = 0

=> x = -1

3 tháng 7 2017

còn b vs c thì sao ạ

9 tháng 9 2018

a)\(-\frac{2}{5}+\frac{2}{3}x+\frac{1}{6}x=-\frac{4}{5}\Leftrightarrow\frac{5}{6}x=-\frac{2}{5}\Leftrightarrow x=-\frac{12}{25}\)
Vậy nghiệm là x = -12/25

b)\(\frac{3}{2}x-\frac{2}{5}-\frac{2}{3}x=-\frac{4}{15}\Leftrightarrow\frac{5}{6}x=\frac{2}{15}\Leftrightarrow x=\frac{4}{25}\)
Vậy nghiệm là x = 4/25

c)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)\(\Leftrightarrow x=-1\)
Vậy nghiệm là x = -1
 

9 tháng 9 2018

Cảm ơn bạnh nha. Chúc bạn buổi tối ấm =)))) <3

24 tháng 7 2018

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau

1)  Áp dụng tính chất dãy tỉ số bằng nhau ta có     

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

suy ra:  \(\frac{x}{3}=2\)=>  \(x=6\)

            \(\frac{y}{4}=2\)=>  \(y=8\)

Vậy...

2)  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

suy ra:  \(\frac{x}{5}=10\)=>  \(x=50\)

             \(\frac{y}{3}=10\)=>  \(y=30\)

Vậy...

18 tháng 6 2019

1) \(\frac{x+1}{15}+\frac{x+2}{14}=\frac{x+3}{13}+\frac{x+4}{12}\)

\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{13}-\frac{x+16}{12}=0\)

\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{13}-\frac{1}{12}\right)=0\)

\(\Leftrightarrow x=-16\)

2)3)4) tương tự

Gợi ý : 2) cộng 3 vào cả hai vế

3)4) cộng 2 vào cả hai vế

5) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=-3\)

\(\Leftrightarrow\frac{x+21}{20}+\frac{x+21}{19}+\frac{x+21}{18}=0\)

\(\Leftrightarrow\left(x+21\right)\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}\right)=0\)

\(\Leftrightarrow x=-21\)

6) sửa VT = 4 rồi tương tự câu 5)

23 tháng 6 2019

Bạn ơi cho mình hỏi " 0 " tự nhiên ở đâu xuất hiện v ?

14 tháng 9 2019

\(e,\frac{22}{15}-x=-\frac{8}{27}\)

=> \(x=\frac{22}{15}-\left[-\frac{8}{27}\right]\)

=> \(x=\frac{22}{15}+\frac{8}{27}\)

=> \(x=\frac{198}{135}+\frac{40}{135}=\frac{198+40}{135}=\frac{238}{135}\)

\(g,\left[\frac{2x}{5}-1\right]:\left[-5\right]=\frac{1}{4}\)

=> \(\left[\frac{2x}{5}-\frac{1}{1}\right]=\frac{1}{4}\cdot\left[-5\right]\)

=> \(\left[\frac{2x}{5}-\frac{5}{5}\right]=-\frac{5}{4}\)

=> \(\frac{2x-5}{5}=-\frac{5}{4}\)

=> \(2x-5=-\frac{5}{4}\cdot5=-\frac{25}{4}\)

=> \(2x=-\frac{5}{4}\)

=> \(x=-\frac{5}{8}\)

\(h,-2\frac{1}{4}x+9\frac{1}{4}=20\)

=> \(-\frac{9}{4}x+\frac{37}{4}=20\)

=> \(-\frac{9}{4}x=20-\frac{37}{4}=\frac{43}{4}\)

=> \(x=\frac{43}{4}:\left[-\frac{9}{4}\right]=\frac{43}{4}\cdot\left[-\frac{4}{9}\right]=\frac{43}{1}\cdot\left[-\frac{1}{9}\right]=-\frac{43}{9}\)

\(i,-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)

=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le-\frac{13}{5}:\frac{21}{15}\)

=> \(-\frac{1}{1}\cdot\frac{10}{1}\le x\le-\frac{13}{5}\cdot\frac{15}{21}\)

=> \(-10\le x\le-\frac{13}{1}\cdot\frac{3}{21}\)

=> \(-10\le x\le-\frac{13}{1}\cdot\frac{1}{7}\)

=> \(-10\le x\le-\frac{13}{7}\)

Đến đây tìm x