\(5+5^2+5^3+...+5^{2004}\)chia hết cho 126

help nha...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

\(B=5+5^2+5^3+5^4+5^5+5^6+....+5^{2004}\)

\(B=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{1999}+5^{2000}+5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(B=5.\left(1+5+5^2+5^3+5^4+5^5\right)+....+5^{1999}.\left(1+5+5^2+5^3+5^4+5^5\right)\)

\(B=\left(1+5+5^2+5^3+5^4+5^5\right).\left(5+5^2+....+5^{1999}\right)\)

\(B=3906.\left(5+5^2+....+5^{1999}\right)\)

Vì 3906 chia hết cho 126 nên:

\(3906.\left(5+5^2+....+5^{1999}\right)\) chia hết cho 126

Do đó B chia hết cho 126(đpcm)

Chúc bạn học tốt!!!

9 tháng 7 2017

Câu 1:

B có 2004 số hạng, ta chia B thành 501 nhóm, mỗi nhóm có 6 số hạng như sau:

\(\)\(B=\left(5+5^2+5^3+5^4+5^5+5^6\right)+....+\left(5^{1999}+5^{2000}+5^{2001}+5^{2002}+5^{2005}+5^{2004}\right)\)

\(B=\left[\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)\right]+....+\left[\left(5^{1999}+5^{2003}\right)+\left(5^{2000}+5^{2003}\right)+\left(5^{2001}+5^{2004}\right)\right]\)

\(B=\left[5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)\right]+...+\left[5^{1999}\left(1+5^3\right)+5^{2000}\left(1+5^3\right)+5^{2001}\left(1+5^3\right)\right]\)

\(B=5.126+5^2.126+5^3.126+...+5^{1999}.126+5^{2000}.126+5^{2001}.126\)\(B=126.\left(5+5^2+5^3+...+5^{1999}+5^{2000}+5^{2001}\right)⋮126\left(đpcm\right)\)

Vậy \(B⋮126\)

23 tháng 4 2016

Cung minh chia het cho 126

S=(5+5^2+5^3+5^4+5^5+5^6)+(5^7+5^8+5^9+5^10+5^11+5^12)+...+(5^1999+5^2000+5^2001+2002+2003+2004)

S=(5+5^3)+(5^2+5^5)+(5^3+5^6)+...+(5^2000+5^2003)+(5^2001+5^2004)

S=5.(1+125)+5^2.(1+125)+5^3.(1+125)+...+5^2000.(1+125)+5^2001.(1+125)

S=5.126+5^2.126+5^3.126+...+5^2000.126+5^2001.126

S=126.(5+5^2+5^3+...+5^2000+5^2001) chia het cho 126

Chung minh chia het cho 65 tuong tu nhom 4 so roi dat thua so chung.

23 tháng 4 2016

 Ta có: S = 5 + 52 + 53 + ... + 52004

           S = ( 5 + 53) + ( 52+ 54) +...+ ( 52002 + 52004)

           S = ( 5 + 53) + 5 ( 5 + 53) + ...+ 52001 ( 5 + 53

            S = 2 .65 + 5.2.65 + ...+ 52001.2.65

=> S chia hết cho 65

Chắc là chia hết cho 156 chứ 126 mình không làm được

12 tháng 7 2019

b , Số số hạng của S là : ( 100 - 1 ) : 1 + 1 = 100 ssh 

Ta chia S thành 20 nhóm , mỗi nhóm 2 số hạng 

=> S = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 ) 

=> S = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 2 96 . ( 1 + 2 + 22 + 23 + 24 ) 

=> S = 2 . 31 + ... + 296 . 31 

=> S = 31 . ( 2 + .. + 296 ) chia hết cho 31

Vậy S chia hết cho 31 ( đpcm )

16 tháng 12 2016

\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)

=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}

n-1-5-115
n-4026

Vậy n = {-4;0;2;6}

S = 5+52+53+...+52006

5S = 52+53+54+...+52007

5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

 

25 tháng 7 2019

\(S=5+5^2+5^3+5^4+...+5^{2012}\)

\(S=\left(5+5^3\right)+\left(5^2+5^4\right)+...+\left(5^{2010}+5^{2012}\right)\)

\(S=\left(5+5^3\right)+5\left(5+5^3\right)+...+5^{2009}\left(5+5^3\right)\)

\(S=130+5\cdot130+...+5^{2009}\cdot130\)

\(S=65\cdot2+5\cdot65\cdot2+...+5^{2009}\cdot65\cdot2\)

\(S=65\left(2+5\cdot2+...+5^{2009}\cdot2\right)⋮65\)   (đpcm)

=))

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)