\(\frac{b^2+c^2-a^2}{2bc}\);y=\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

b/ \(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)

\(\Leftrightarrow x^2-\left(ab+bc+ca+2a+2b+2c+1\right)x+2abc+ab+bc+ca=0\)

Đặt: \(\hept{\begin{cases}ab+bc+ca+2a+2b+2c+1=m\\2abc+ab+bc+ca=n\end{cases}}\) (đặt cho gọn)

\(\Leftrightarrow x^2-mx+n=0\)

\(\Leftrightarrow\left(x^2-\frac{2m}{2}x+\frac{m^2}{4}\right)-\frac{m^2}{4}+n=0\)

\(\Leftrightarrow\left(x-\frac{m}{2}\right)^2=\frac{m^2}{4}-n\)

\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{m^2}{4}-n}+\frac{m}{2}\\x=-\sqrt{\frac{m^2}{4}-n}+\frac{m}{2}\end{cases}}\)

12 tháng 3 2017

a/ \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)

\(\Leftrightarrow\left(a+b\right)x^2-\left(a^2+b^2\right)x-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(\left(a+b\right)x^2-\frac{2x\sqrt{a+b}.\left(a^2+b^2\right)}{2\sqrt{a+b}}+\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}\right)-\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(\sqrt{a+b}x-\frac{a^2+b^2}{2\sqrt{a+b}}\right)^2=\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)}+\frac{a^2+b^2}{2\sqrt{a+b}}}{\sqrt{a+b}}\\x=\frac{-\sqrt{\frac{\left(a^2+b^2\right)^2}{4\left(a+b\right)}+ab\left(a+b\right)}+\frac{a^2+b^2}{2\sqrt{a+b}}}{\sqrt{a+b}}\end{cases}}\)

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

25 tháng 1 2017

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)

\(\frac{yz+xz+xy}{xyz}=0\)

yz + xz + xy = 0

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)

25 tháng 1 2017

a) Từ giả thiết suy ra: xy + yz + zx = 0

Do đó:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)

b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)

Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)

Suy ra điều phải chứng minh