\(\widehat{xOy}\)khác góc bẹt. Lấy các điểm A , B thuộc tia Ox sao cho OA <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)


 

0
Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)

1
13 tháng 10 2020

là oxy=7

Giúp mình nhanh với, mình cần gấp:1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.a) Tính \(\widehat{ACB}\)b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.2. Cho tam giác ABC có...
Đọc tiếp

Giúp mình nhanh với, mình cần gấp:

1. Cho góc vuông \(\widehat{xOy}\). Lấy A thuộc tia Ox, B thuộc tia Ox, B thuộc ti a Oy (OA<OB). Từ A kẻ đường thẳng song song với Oy, từ B kẻ đường thẳng song song với Ox, chúng cặt nhau ở C.

a) Tính \(\widehat{ACB}\)

b) Kẻ tia phân giác của  \(\widehat{xOy}\), cắt AC ở D. Tính góc ADO;

c) Kẻ tia phân giác của \(\widehat{ACB}\), cắt OB ở E. Chứng minh OD // CE.

2. Cho tam giác ABC có AB = AC. Trên nửa mặt phẳng bờ AB không chứa C lấy M sao cho \(\widehat{BAM}\) = \(\widehat{ABC}\) và AM = AB. Trên nửa mặt phẳng bờ AC không chứa B lấy N sao cho \(\widehat{CAN}\) =  \(\widehat{ACB}\)và AN =AC. Từ A vẽ đường thẳng d vuông góc với BC.

Chứng minh: Đường thẳng d là đường trung trực của đoạn thẳng MN.

( Có vẽ hình nhé. Cảm ơn nhiều ạ!)

1
13 tháng 10 2020

hệ mày

18 tháng 8 2019

a, Vì Oz là tia phân giác của xOy

=> xOz = zOy = xOy/2 = 60o/2 = 30o

b, Xét △OIA và △ OIB

Có: OA = OB 

      AOI = IOB

      OT là cạnh chung

=>  △OIA = △OIB (c.g.c)

c, Vì △OIA = △OIB

=> AIO = OIB (2 góc tương ứng)

Mà AIO + OIB = 180(2 góc kề bù)

=> AIO = OIB = 90o  

=> OI vuông góc AB

18 tháng 8 2019

Hình dễ tự vẽ

a ) Oz là tia p/g của góc xOy => \(\widehat{xOz}=\widehat{zOy}=\frac{1}{2}.\widehat{xOy}=30^o\)

=> góc zOy = 30 độ

b ) Xét tam giác OIA và tam giác OIB có :

OA = OB ( gt )

\(\widehat{xOz}=\widehat{zOy}\)( Oz là tia p/g của góc xOy )

OI là cạnh chung

=> Tam giác OIA = Tam giác OIB ( c.g.c )

b ) Do tam giác OIA = tam giác OIB ( cm trên ) => \(\widehat{OIA}=\widehat{OIB}\)

Ta có :

\(\widehat{OIA}+\widehat{OIB}=180^o\)( hai góc kề bù )

\(\widehat{OIA}+\widehat{OIA}=180^o\)

\(\widehat{OIA}.2=180^o\)

=> \(\widehat{OIA}=90^o\)

=> OI vuông góc với AB