Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Ta có: 3D = A => A = 45 x 3 = 135 (độ)
Vì A + D = 180(độ) =>AB // CD => Tứ giác ABCD là hình thang.
Mà B = C => ABCD là hình thang cân.
Câu 2: Độ dài cạnh DC là : 3.5 + 1.5 = 4 (cm)
Vì H là đường cao của hình thang ABCD => AH vuông góc với CD.
Tam giác vuông ADH có:
AH ^ 2 + HD ^2 = AD ^ 2
=> 4 + 2.25 = AD ^ 2
=> AD ^ 2 =6.25 =2.5 ^ 2 => AD = 2.5(cm)
Vì ABCD là hình thang cân => AD = BC =2.5(cm)
Ta kẻ BE vuông góc với DC.
Vì tứ giác ABCD là hình thang cân nên
=> Tam giác ADH = Tam giác BCE
=> HD = EC = 1.5 (cm)
AH = BE = 2 (cm)
Mặt khác:Xét tam giác vuông AHE và tam giác vuông EBA có :
AH = BE (theo c/m trên)
AE cạnh chung
=> Tam giác AHE = Tam giác EBA ( Ch - cgv)
=> AB = EH
Mà EH = HC - HD - EC = 3.5 -1.5 - 1.5 = 0.5 (cm)
Chu vi của hình thang cân ABCD là:
4 + 2.5 + 2.5 + 0.5 = 9.5
Bài mik hơi dài .... xl bạn
Kẻ \(BH\perp CD\)
Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)
Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)
\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)
\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)
Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)
Chu vi hình thang vuông ABCD là:
\(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)
Chúc bạn học tốt.