Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đó; ΔBMC vuông tại M
=>CM\(\perp\)MB tại M
=>CM\(\perp\)AB tại M
Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đó;ΔBNC vuông tại N
=>BN\(\perp\)NC tại N
=>BN\(\perp\)AB tại N
Xét ΔABC có
BN,CM là đường cao
BN cắt CM tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại K
b: Xét tứ giác AMHN có
\(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)
=>AMHN là tứ giác nội tiếp đường tròn đường kính AH
=>A,M,H,N cùng thuộc đường tròn đường kính AH
tâm I là trung điểm của AH
c: IM=IH
=>ΔIMH cân tại I
=>\(\widehat{IMH}=\widehat{IHM}\)
mà \(\widehat{IHM}=\widehat{KHC}\)(hai góc đối đỉnh)
và \(\widehat{KHC}=\widehat{MBC}\left(=90^0-\widehat{MCB}\right)\)
nên \(\widehat{IMH}=\widehat{MBC}\)
OM=OC
=>ΔOMC cân tại O
=>\(\widehat{OMC}=\widehat{OCM}\)
=>\(\widehat{OMC}=\widehat{MCB}\)
\(\widehat{IMO}=\widehat{IMH}+\widehat{OMH}\)
\(=\widehat{MCB}+\widehat{MBC}=90^0\)
=>IM là tiếp tuyến của (O)
Xét ΔIMO và ΔINO có
IM=IN
MO=NO
IO chung
Do đó: ΔIMO=ΔINO
=>\(\widehat{IMO}=\widehat{INO}=90^0\)
=>IN là tiếp tuyến của (O)
nếu bạn làm được thì bạn hãy làm đi , tra mạng , và tham khảo ít thôi nhé
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.
Em xem lại đề bài này nhé.
d. Do S, H cùng thuộc AH nên nếu S, H ,E thẳng hàng thì E phải thuộc AH. Cô có hình vẽ phản chứng:
Đường tròn c: Đường tròn qua C với tâm O Đường tròn d: Đường tròn qua N, O, C Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, N] Đoạn thẳng j: Đoạn thẳng [C, M] Đoạn thẳng k: Đoạn thẳng [A, E] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [O, E] Đoạn thẳng p: Đoạn thẳng [M, N] Đoạn thẳng q: Đoạn thẳng [A, D] B = (-0.48, 1.12) B = (-0.48, 1.12) B = (-0.48, 1.12) A = (1.14, 6.58) A = (1.14, 6.58) A = (1.14, 6.58) C = (7.38, 1.12) C = (7.38, 1.12) C = (7.38, 1.12) Điểm O: Trung điểm của g Điểm O: Trung điểm của g Điểm O: Trung điểm của g Điểm M: Giao điểm của c, f Điểm M: Giao điểm của c, f Điểm M: Giao điểm của c, f Điểm N: Giao điểm của c, h Điểm N: Giao điểm của c, h Điểm N: Giao điểm của c, h Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm H: Giao điểm của i, j Điểm E: Giao điểm của d, e Điểm E: Giao điểm của d, e Điểm E: Giao điểm của d, e Điểm D: Giao điểm của n, g Điểm D: Giao điểm của n, g Điểm D: Giao điểm của n, g Điểm S: Giao điểm của n, p Điểm S: Giao điểm của n, p Điểm S: Giao điểm của n, p
a: Xét (O) có
ΔBMC nội tiếp
BC là đường kính
Do đo: ΔBMC vuông tại M
=>góc BMC=90 độ
b: Xét (O) có
ΔBNC nội tiếp
BC là đường kính
Do đó: ΔBNC vuông tại N
Xét tứ giac AMHN có
góc AMH+góc ANH=180 độ
nên AMHN là tứ giác nội tiếp
=>I là trung điểm của AH