\(\left(\frac{2}{2x-y}+\frac{6y}{y^2-4x^2}-\frac{4}{2x+y}\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

bạn đợi mình tí nhé, khoảng 15 phút sau mình gửi câu trả lời :>>

2 tháng 3 2020

\(\text{Câu 1 thì bạn tự làm chịu khó tí:}y^2-4x^2=\left(y+2x\right)\left(y-2x\right)\)

\(\text{Bài 2:}ab\left(b-a\right)+bc\left(c-b\right)+ac\left(a-c\right)\)

\(=ab\left(b-a\right)-bc\left(b-c\right)+ac\left(a-c\right)\)

\(=ab\left(b-a\right)-bc\left[\left(b-a\right)+\left(a-c\right)\right]+ac\left(a-c\right)\)

\(=\left(ab-bc\right)\left(b-a\right)+\left(ac-bc\right)\left(a-c\right)\)

\(=b\left(a-c\right)\left(b-a\right)+c\left(a-b\right)\left(a-c\right)=\left(b-c\right)\left(b-a\right)\left(a-c\right)\)

AH
Akai Haruma
Giáo viên
5 tháng 9 2020

Lời giải:
a)

\(A=\frac{x^2y(y-x)-xy^2(x-y)}{3y^2-2x^2}=\frac{x^2y(y-x)+xy^2(y-x)}{3y^2-2x^2}=\frac{(xy^2+x^2y)(y-x)}{3y^2-2x^2}\)

\(=\frac{xy(x+y)(y-x)}{3y^2-2x^2}=\frac{xy(y^2-x^2)}{3y^2-2x^2}\)

Với $x=-3; y=\frac{1}{2}$ thì:

$xy=\frac{-3}{2}; x^2=9; y^2=\frac{1}{4}$

Do đó $A=\frac{-35}{46}$

b)
\(B=\frac{(8x^3-y^3)(4x^2-y^2)}{(2x+y)(4x^2-4xy+y^2)}=\frac{(2x-y)(4x^2+2xy+y^2)(2x-y)(2x+y)}{(2x+y)(2x-y)^2}\)

\(=4x^2+2xy+y^2=4.2^2+2.2.\frac{-1}{2}+(\frac{-1}{2})^2=\frac{57}{4}\)

22 tháng 10 2019

Bài 1:

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3-x+y\right)\)

\(=2\left(x-y\right)\left(2x+3+y\right)\)

Bài 2:

\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)

\(=\left(3x-1-x-1\right)^2\)

\(=\left(2x-2\right)^2\)(1)

b) Thay \(x=\frac{9}{4}\)vào (1) ta được: 

\(\left(2.\frac{9}{4}-2\right)^2\)

\(=\frac{25}{4}\)

Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)

Bài 3:

Ta có: \(M=x^2+4x+5\)

\(=\left(x+2\right)^2+1\)

Vì \(\left(x+2\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)

Hay \(M\ge1;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)

                       \(\Leftrightarrow x=-2\)

Vậy \(M_{min}=1\Leftrightarrow x=-2\)

22 tháng 10 2019

Bài 1 : trên là sai nha mình làm lại

\(6x^2-2\left(x-y\right)^2-6y^2\)

\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)

\(=2\left(x-y\right)\left(2x+4y\right)\)

\(=4\left(x-y\right)\left(x+2y\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 2 2020

Lời giải:

a) ĐK: $a\neq -b\neq 0$

\(A=\left(\frac{a^2+b^2}{a^2b^2}+\frac{2}{a+b}.\frac{a+b}{ab}\right).\frac{ab}{(a+b)^2}\)

\(=\left(\frac{a^2+b^2}{a^2b^2}+\frac{2ab}{a^2b^2}\right).\frac{ab}{(a+b)^2}=\frac{(a+b)^2}{a^2b^2}.\frac{ab}{(a+b)^2}=\frac{1}{ab}\)

b)

\(B=\left[\frac{(2x+y)^2}{(2x-y)^2(2x+y)^2}+\frac{(2x-y)^2}{(2x-y)^2(2x+y)^2}+\frac{2}{(2x-y)(2x+y)}\right].\frac{(2x+y)^2}{16x}\)

\(=\left[\frac{8x^2+2y^2}{(2x-y)^2(2x+y)^2}+\frac{2(2x-y)(2x+y)}{(2x-y)^2(2x+y)^2}\right].\frac{(2x+y)^2}{16x}\)

\(=\frac{8x^2+2y^2+2(4x^2-y^2)}{(2x-y)^2(2x+y)^2}.\frac{(2x+y)^2}{16x}\)

\(=\frac{16x^2}{(2x-y)^2(2x+y)^2}.\frac{(2x+y)^2}{16x}=\frac{x}{(2x-y)^2}\)

29 tháng 2 2020

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

\(=\left(\frac{1}{a}+\frac{1}{b}\right)^2.\frac{ab}{\left(a+b\right)^2}\)

\(=\frac{1}{ab}\)

\(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{4x^2-y^2}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+14xy+y^2}{16x}\)

\(=\frac{\left(2x+y\right)^2+2\left(2x+y\right)\left(2x-y\right)+\left(2x-y\right)^2}{\left(2x+y\right)^2.\left(2x-y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{\left(2x+y+2x-y\right)^2}{\left(2x+y\right)^2.\left(2x-y\right)^2}.\frac{\left(2x+y\right)^2}{16x}\)

\(=\frac{x}{\left(2x-y\right)^2}\)

29 tháng 2 2020

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}.\left(\frac{1}{a}+\frac{1}{b}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

ĐK: a, b khác 0, a khác -b

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{a+b}.\left(\frac{a+b}{ab}\right)\right].\frac{ab}{\left(a+b\right)^2}\)

\(A=\left[\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}\right].\frac{ab}{\left(a+b\right)^2}=\left(\frac{1}{a}+\frac{1}{b}\right)^2.\frac{ab}{\left(a+b\right)^2}\)

\(A=\frac{\left(a+b\right)^2}{ab}.\frac{ab}{\left(a+b\right)^2}=1\)

 \(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{\left(4x^2-y^2\right)}+\frac{1}{\left(2x+y\right)^2}\right].\frac{4x^2+4xy+y^2}{16xy}\)

ĐK: xy khác 0, y  \(\ne\pm\)2x

\(B=\left[\frac{1}{\left(2x-y\right)^2}+\frac{2}{\left(2x-y\right).\left(2x+y\right)}+\frac{1}{\left(2x+y\right)^2}\right].\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\left[\frac{1}{\left(2x-y\right)}+\frac{1}{\left(2x+y\right)}\right]^2.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\left(\frac{2x+y+2x-y}{\left(2x-y\right).\left(2x+y\right)}\right)^2.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\frac{16x^2}{\left(2x-y\right)^2.\left(2x+y\right)^2}.\frac{\left(2x+y\right)^2}{16xy}\)

\(B=\frac{x}{\left(2x-y\right)^2.y}\)

16 tháng 12 2017

a)  A \(=\)\(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)\(=\)\(\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)

\(=\)\(\frac{2\left(x-2\right)}{x+2}\)\(=\)\(\frac{2x-4}{x+2}\)

Tại   x = \(\frac{1}{2}\)thì:

             A = \(\frac{2.\frac{1}{2}-4}{\frac{1}{2}+2}\)\(=\)\(\frac{-3}{\frac{5}{2}}\)\(=\)\(\frac{-6}{5}\)

23 tháng 12 2018

1/ 

a) \(x^2+4y^2+4xy-16\)

\(=x^2+2.2xy+\left(2y\right)^2-4^2\)

\(=\left(x+2y\right)^2-4^2\)

\(=\left(x+2y-4\right)\left(x+2y+4\right)\)

23 tháng 12 2018

b) ta có:

\(\left(2x+y\right)\left(y-2x\right)+4x^2\)

\(=-\left(2x-y\right)\left(2x+y\right)+4x^2\)

\(=\left(2x\right)^2-\left[\left(2x\right)^2-y^2\right]\)

\(=\left(2x\right)^2-\left(2x\right)^2+y^2\)

\(=y^2\)

Vậy giá trị của biểu thức trên không phụ thuộc vào giá trị của x

nên tại y = 10

giá trị của biểu thức trên bằng y2 = 102 = 100

20 tháng 11 2017

fdsafdas

fdasfadsf

fdasfadsf

fdsafdsaf

fdsafsda