Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tính tổng:
B = 2 - 4 - 6 + 8 + 10 - 12 - 14 + 16 + ... + 2002 - 2004 - 2006 + 2008
=> ( 2 - 4 - 6 + 8 )+ (10 - 12 - 14 + 16) + ... + (2002 - 2004 - 2006 + 2008)
=> (-8+ 8) +(-16+ 16) +.........+ ( -2008+ 2008)(1)
=> 0+0+...........+0
=> 0
Ta thấy (1) đều là những số đối nên kết quả đường nhiên bằng 0
\(A=1+4+4^2+4^3+...+4^{99}\\ \Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow3.A=4^{100}-1\\ \Rightarrow A=\dfrac{4^{100}-1}{3}< \dfrac{4^{100}}{3}=\dfrac{B}{3}\\ \Rightarrow A< \dfrac{B}{3}\)
\(B=3+3^2+3^3+.....+3^{2006}\)
\(\Rightarrow3B=3^2+3^3+....+3^{2007}\)
\(\Rightarrow2B=3^{2007}-3\)
\(\Rightarrow B=\frac{3^{2007}-3}{2}\)
\(2B+3=3^x\)
\(\Rightarrow2.\frac{3^{2007}-3}{2}+3=3^x\)
\(\Rightarrow3^{2007}-3+3=3^x\Rightarrow3^{2007}=3^x\Rightarrow x=2007\)
quên, còn bài chứng minh!ahihi
Bài 2:
ta có:
A = \(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(...\right)\)( nếu vít nốt 3 số cuối thì ko đủ nên tự bn điền ha)
A =\(\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+\left(...\right)\)
A=\(13+3^3.13+...+3^{1998}.13\)
A=\(13.\left(1+3^3+...+3^{1998}\right)⋮13\)
suy ra A chia hết cho 13
a) đặt A =\(1+2+2^2+...+2^{99}\)
ta có:
2A = \(2+2^2+2^3+...+2^{99}+2^{100}\)
2A-A=\(\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)
2A-A=\(2+2^2+...+2^{100}-1-2-...-2^{99}\)
A=\(2^{100}-1-2^{99}\)
ukm lâu r ko hay làm mấy bài dạng ntn nên mk quên rùi, ko pik đúng ko! v nên có sai cũng đừng ném gạch bn nhé! mấy bài sau làm tương tự!
A=1+3+32+33+....+333
3A=3+32+33+34+...+334
2A=3A-A=( 3+32+33+34+...+334 ) - ( 1+3+32+33+....+333 )
2A=334 - 1
A = \(\frac{3^{34}-1}{2}\)
B-A=\(\frac{3^{21}-3^{34}+1}{2}\)
************************************************************
a) Ta có: \(B=1+3+3^2+....+3^{2006}\)
\(\Leftrightarrow3B=3+3^2+.....+3^{2006}+3^{2007}\)
\(\Rightarrow3B-B=3^{2007}-1\)
\(\Leftrightarrow B=\dfrac{3^{2007}-1}{2}\)
Vậy \(B=\dfrac{2^{2007}-1}{2}\)
b) Ta có: \(A=3^{2007}-1=\left(3-1\right)\left(3^{2006}+3^{2005}+.......+3+1\right)\)
\(\Leftrightarrow A=2\left(3^{2006}+3^{2005}+....+3+1\right)\) luôn chia hết cho 2
Vậy \(A=\left(3^{2007}-1\right)⋮2\)
a) \(B=1+3+3^2+3^3+3^4+.......+3^{2006}\)
\(\Leftrightarrow3B=3+3^2+3^3+3^4+.......+3^{2007}\)
\(\Leftrightarrow3B-B=\left(3+3^2+3^3+3^4+.......+3^{2007}\right)-\left(1+3+3^2+3^3+3^4+.......+3^{2006}\right)\)
\(\Leftrightarrow2B=3^{2007}-1\)
\(\Leftrightarrow B=\dfrac{3^{2007}-1}{2}\)
Vậy \(B=\dfrac{3^{2007}-1}{2}\)