Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(16x^2-5=0\)
\(\Rightarrow16x^2=5\)
\(\Rightarrow x^2=\frac{5}{16}\)
\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)
b, \(2\sqrt{x-3}=4\)
\(\Rightarrow\sqrt{x-3}=4:2\)
\(\Rightarrow\sqrt{x-3}=2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
c, \(\sqrt{4x^2-4x+1}=3\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
d, \(\sqrt{x+3}\ge5\)
\(\Rightarrow x+3\ge25\)
\(\Rightarrow x\ge22\)
e, \(\sqrt{3x-1}< 2\)
\(\Rightarrow3x-1< 4\)
\(\Rightarrow3x< 5\)
\(\Rightarrow x< \frac{5}{3}\)
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Rightarrow\sqrt{x-3}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(16x^2-5=0\)
\(\Leftrightarrow16x^2=5\)
\(\Leftrightarrow x^2=\frac{5}{16}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)
b) \(2\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\)
\(\Leftrightarrow x=7\)
c) \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
d) \(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
e) \(\sqrt{3x-1}< 2\)
\(\Leftrightarrow3x-1< 4\)
\(\Leftrightarrow3x< 5\)
\(\Leftrightarrow x< \frac{5}{3}\)
g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Leftrightarrow\sqrt{x-3}=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(x^2-6x+9=4.\sqrt{x^2-6x+6}\)\(ĐK:x^2-6x+6\ge0\)
Đặt \(\sqrt{x^2-6x+6}=t\)\(\left(ĐK:t\ge0\right)\)
\(\Leftrightarrow t^2=x^2-6x+6\)
\(\Leftrightarrow x^2-6x=t-6\)thay vào pt ta được :
\(\Leftrightarrow t^2-6+9=4t\)
\(\Leftrightarrow t^2-4t+3=0\)\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)
Với \(t=1\Rightarrow\sqrt{x^2-6x+6}=1\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=5\left(TM\right)\end{cases}}\)
Với \(t=3\Rightarrow\sqrt{x^2-6x+6}=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{6}\left(TM\right)\\x=3-\sqrt{6}\left(TM\right)\end{cases}}\)
1) \(A=\left(\frac{x^3-1}{x-1}+x\right)\times\left(\frac{x^3+1}{x+1}-x\right)\)( vầy hả ? )
ĐKXĐ : \(x\ne\pm1\)
\(=\left[\frac{\left(x-1\right)\left(x^2+x+1\right)}{x-1}+x\right]\times\left[\frac{\left(x+1\right)\left(x^2-x+1\right)}{x+1}-x\right]\)
\(=\left(x^2+x+1+x\right)\left(x^2-x+1+x\right)\)
\(=\left(x^2+2x+1\right)\left(x^2+1\right)\)
\(=\left(x+1\right)^2\left(x^2+1\right)\)
2) Gọi tử số của phân số đó là x ( x ∈ Z )
=> Mẫu số của phân số đó là x + 5
=> Phân số cần tìm có dạng \(\frac{x}{x+5}\)
Thêm 1 vào tử thì ta có phân số = 1/2
=> Ta có phương trình : \(\frac{x+1}{x+5}=\frac{1}{2}\)( ĐKXĐ : x \(x\ne-5\))
<=> ( x + 1 ).2 = ( x + 5 ).1
<=> 2x + 2 = x + 5
<=> 2x - x = 5 - 2
<=> x = 3 ( tmđk )
=> Phân số cần tìm là \(\frac{3}{3+5}=\frac{3}{8}\)
3) Q = x2 + y2 - 6x + 8y + 19
= ( x2 - 6x + 9 ) + ( y2 + 8y + 16 ) - 6
= ( x - 3 )2 + ( y + 4 )2 - 6 ≥ -6 ∀ x, y
Đẳng thức xảy ra <=> x = 3 ; y = -4
=> MinQ = -6 <=> x = 3 ; y = -4
K = \(\sqrt{x^2-6x+9}+\sqrt{x^2-16x+64}+100\)
Ta có hẳng đẳng thức \(\sqrt{a^2}=\left|a\right|\)
\(=\sqrt{\left(x-3\right)^2}+\sqrt{\left(x-8\right)^2}+100\)
\(=\left|x-3\right|+\left|x-8\right|+100\)
\(=\left|x-3\right|+\left|8-x\right|+100\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(K=\left|x-3\right|+\left|8-x\right|+100\ge\left|x-3+8-x\right|+100=\left|5\right|+100=105\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(x-3\right)\left(8-x\right)\ge0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}x-3\ge0\\8-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\-x\ge-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le8\end{cases}}\Leftrightarrow3\le x\le8\)
2. \(\hept{\begin{cases}x-3\le0\\8-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\-x\le-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge8\end{cases}}\)( loại )
=> MinK = 105 <=> \(3\le x\le8\)
\(a,|x+3|=3x-1\)
+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)
\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)
+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)
\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)
Vậy: x=2
a/
ĐK \(x^2-6x+6\ge0\)
\(\text{pt }\Leftrightarrow\left(x^2-6x+6\right)-4\sqrt{x^2-6x+6}+3=0\)
Đặt \(t=\sqrt{x^2-6x+6};t\ge0\)
pt thành \(t^2-4t+3=0\Leftrightarrow t=3\text{ hoặc }t=1\)
\(+t=1\Rightarrow x^2-6x+6=1^2\Leftrightarrow x^2-6x+7=0\Leftrightarrow t=3+\sqrt{2}\text{ hoặc }t=3-\sqrt{2}\)
\(+t=3\Rightarrow x^2-6x+6=3^2\Leftrightarrow x^2-6x-3=0\Leftrightarrow x=3+2\sqrt{3}\text{ hoặc }x=3-2\sqrt{3}\)
Vậy ....
b/
ĐK: \(x^2+3x\ge0\)
\(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\Leftrightarrow-\left(x^2+3x\right)-3\sqrt{x^2+3x}+10=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3x}-2\right)\left(\sqrt{x^2+3x}+5\right)=0\)
\(\Leftrightarrow\sqrt{x^2+3x}=2\text{ hoặc }\sqrt{x^2+3x}=-5\text{ (loại)}\)
\(\Leftrightarrow x^2+3x-2^2=0\Leftrightarrow x=1\text{ hoặc }x=-4\)
Vậy ....
ĐKXĐ: \(x\in R\)
Ta có: \(\sqrt{x^2-6x+9}=\sqrt{4x^2}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(2x\right)^2}\)
\(\Leftrightarrow\left|x-3\right|=\left|2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x\\x-3=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3-2x=0\\x-3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x-3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=3\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-3;1}
căn x2-6x+9=5
x=4/5
nha bạn chúc bạn học tốt
\(\sqrt{x^2-6x+9}=5\)
<=>\(\sqrt{\left(x-3\right)^2}=5\)
<=> | x - 3 | = 5 <=> \(\orbr{\begin{cases}x=8\\x=-2\end{cases}}\)