Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\) có nghĩa \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\cdot\dfrac{\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\left(\sqrt{x}+1\right)^2\)
a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b: Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}+1\)
=>\(\sqrt{x}+1-2⋮\sqrt{x}+1\)
=>căn x+1 thuộc {1;2}
=>căn x thuộc {0;1}
mà x<>1
nên x=0
1) Ta có: \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
`ĐK:(x-1)/(x+2)>=0`
`TH1:`
`x-1>=0` và `x+2>0`
`<=>x>=1` và `x> -2`
`<=>x>=1`
`TH2:
`x-1\le0` và `x+2<0`
`<=>x\le1` và `x< -2`
`<=>x< -2`
Vậy `x>=1` hoặc `x< -2` thì căn thức có nghĩa
ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)
Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2\left(x+\sqrt{x}\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x+\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x+\sqrt{x}\)
\(\sqrt{x}+\sqrt{1-x}\)
\(=\dfrac{x+1-x}{\sqrt{x}-\sqrt{1-x}}=\dfrac{1}{\sqrt{x}-\sqrt{1-x}}\)