Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)
voi dk \(x\ge-1\) ta co
\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)
b,\(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|+2x=5\)
th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)
th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)
\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)
kl \(x\le\frac{5}{2}\)
c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)
d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)
ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
dau = xay ra \(\Leftrightarrow x=-1\)
Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)
1) \(\sqrt{x-1}=\sqrt{2x+3}\) ĐK: x ≥ 1; x ≥ \(\dfrac{-3}{2}\) => x ≥ 1
=> x - 1 = 2x + 3
=> x - 2x = 3 + 1
=> -x = 4 => x = -4 (ko TMĐK)
Vậy S = ∅
2) \(\sqrt{2x-3}=\sqrt{x-1}\) ĐK: x ≥ \(\dfrac{3}{2}\); x ≥ 1 => x ≥ \(\dfrac{3}{2}\)
=> 2x - 3 = x - 1
=> 2x - x = -1 + 3
=> x = -2 (ko TMĐK)
Vậy S = ∅
3) \(\sqrt{2-x}=\sqrt{3+x}\) ĐK: x ≥ 2; x ≥ -3 => x ≥ 2
=> 2 - x = 3 + x
=> -x - x = 3 - 2
=> -2x = 1 => x = \(\dfrac{-1}{2}\) (ko TMĐK)
Vậy S = ∅
4) \(\sqrt{4x-8}=2\sqrt{x-2}\) ĐK: x ≥ 2
=> 4x - 8 = 2(x - 2)
=> 4x - 8 = 2x - 4
=> 4x - 2x = -4 + 8
=> 2x = 4 => x = 4 : 2 = 2 (TMĐK)
Vậy S = \(\left\{2\right\}\)
5) \(\sqrt{x^2-5}=\sqrt{4x-9}\) ĐK: \(\left|x\right|=\sqrt{5}\) ; x ≥ \(\dfrac{9}{4}\)
<=> x2 - 5 = 4x - 9
<=> x2 - 4x - 5 + 9 = 0
<=> x2 - 4x - 4 = 0 <=> (x - 2)2 =0
=> x = 2 (ko TMĐK)
6) \(\sqrt{x-2}=\sqrt{x^2-2x}\) ĐK: x ≥ 2
=> x - 2 = x2 - 2x
=> x - 2 - x2 + 2x = 0
=> (x - 2) - x(x - 2) = 0
=> (1- x) . (x - 2) = 0
=> \(\left\{{}\begin{matrix}1-x=0\\x-2=0\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-0=1\left(loai\right)\\x=0+2=2\left(TMĐK\right)\end{matrix}\right.\)
Vậy S = \(\left\{2\right\}\)
7) \(\sqrt{x^2-3x}-\sqrt{15-5x}=0\) ĐK: x ≥ 3 hoặc x ≤ 0
<=> \(\sqrt{x^2-3x}=\sqrt{15-5x}\)
<=> x2 - 3x = 15 - 5x
=> x2 - 3x + 5x - 15 = 0
=> x(x -3) + 5(x - 3) = 0
=> (x + 5) . (x - 3) = 0
=> \(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=0-5=-5\\x=0+3=3\end{matrix}\right.\)(TMĐK)
Vậy S = \(\left\{-5;3\right\}\)
8) \(\sqrt{4x^2-9}=\sqrt{-20x-18}\) ĐK: \(\left|x\right|\text{≥}\dfrac{3}{2}\) hoặc x ≤ \(\dfrac{-9}{10}\)
<=> 4x2 - 9 = -20x - 18
<=> 4x2 - 9 + 20x + 18 = 0
<=> 4x2 + 20x + 9 =0
<=> 4x2 + 2x + 18x + 9 =0
<=> 2x(2x + 1) + 9(2x + 1) = 0
<=> (2x + 9) . (2x + 1) = 0
=> \(\left[{}\begin{matrix}2x+9=0\\2x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=-9\\2x=-1\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=\dfrac{-9}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy S = \(\left\{\dfrac{-9}{2};\dfrac{-1}{2}\right\}\)
9) \(\sqrt{x-2}=\sqrt{x-2}\) ĐK: x ≥ 2
<=> x - 2 = x - 2
<=> x - x = 2 - 2
=> 0x = 0 với mọi x TMĐK: x ≥ 2
Kết luận: Phương trình vô nghiệm thoả mãn: x ≥ 2
1,
√(x-1) = √(2x+3)
->(√x-1)^2 = (√2x+3)^2
->x-1=2x+3
->x=-4
2
√(2x−3)=√(x−1) (bình phương lên tiếp)
->2x-3=x-1
->x=2
3->9 tự làm nha tương tự
a) x=49
b) x=4
c) x = 2 hoặc x = -2
d) x= 11,17355372
e) x =10
f) x=2
g)x = 10 000 000 ( nếu theo đề của bạn) và x=0,94 ( nếu theo đề bđ)
h) x =4
k) x = 4/3 hoặc x = -2/3
l) x = 2,5
m) x = 0,5
n) x=-0,5
a) ĐK: $x\geq 0$
\(A=2x-6\sqrt{x}-1=2(x-3\sqrt{x}+\frac{3^2}{2^2})-\frac{11}{2}\)
\(=2(\sqrt{x}-\frac{3}{2})^2-\frac{11}{2}\geq \frac{-11}{2}\)
Vậy GTNN của $A$ là $\frac{-11}{2}$. Giá trị này đạt được tại \((\sqrt{x}-\frac{3}{2})^2=0\Leftrightarrow x=\frac{9}{4}\)
b) Không đủ căn cứ để tìm min- max
c)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{(2x-1)^2}+\sqrt{(2x-3)^2}\)
\(=|2x-1|+|2x-3|\)
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(E=|2x-1|+|3-2x|\geq |2x-1+3-2x|=2\)
Vậy $E_{\min}=2$. Giá trị này đạt tại $(2x-1)(3-2x)\geq 0$
$\Leftrightarrow \frac{1}{2}\leq x\leq \frac{3}{2}$
d) ĐKXĐ: \(\frac{7}{2}\leq x\leq \frac{5}{2}\) (vô lý)
e)
\(A=-3x+6\sqrt{x}+3=6-3(x-2\sqrt{x}+1)=6-3(\sqrt{x}-1)^2\)
\(\leq 6\) do $(\sqrt{x}-1)^2\geq 0$ với mọi $x\geq 0$)
Vậy $A_{\max}=6$. Giá trị này xác định tại $(\sqrt{x}-1)^2=0\Leftrightarrow x=1$
f) ĐK: $x\geq 4$
\(E^2=4x-7-2\sqrt{(2x+1)(2x-8)}\)
Với mọi $x\geq 4$ thì:
\(2x+1> 2x-8\Rightarrow (2x+1)(2x-8)\geq(2x-8)^2\)
\(\Rightarrow E^2\leq 4x-7-2\sqrt{(2x-8)^2}=4x-7-2(2x-8)=9\)
$\Rightarrow E\leq 3$
Vậy $E_{\max}=3$ khi $2x-8=0\Leftrightarrow x=4$
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt