...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

z4:

\(\dfrac{24}{148}=\dfrac{6}{37}=\dfrac{108}{37\cdot18}\)

\(\dfrac{-14}{-36}=\dfrac{7}{18}=\dfrac{7\cdot37}{18\cdot37}=\dfrac{259}{37\cdot18}\)

mà 108<259

nên \(\dfrac{24}{148}< \dfrac{-14}{-36}\)

z5: \(\dfrac{-26}{-72}=\dfrac{26}{72}< 1\)

\(1< \dfrac{45}{20}=\dfrac{-45}{-20}\)

Do đó: \(\dfrac{-26}{-72}< \dfrac{-45}{-20}\)

z6: \(\dfrac{14}{42}=\dfrac{1}{3}=\dfrac{1\cdot4}{3\cdot4}=\dfrac{4}{12}\)

\(\dfrac{21}{28}=\dfrac{3}{4}=\dfrac{3\cdot3}{4\cdot3}=\dfrac{9}{12}\)

mà 4<9

nên \(\dfrac{14}{42}< \dfrac{21}{28}\)

z7: \(\dfrac{-14}{-56}=\dfrac{1}{4}=\dfrac{5}{20}\)

\(\dfrac{21}{35}=\dfrac{3}{5}=\dfrac{3\cdot4}{5\cdot4}=\dfrac{12}{20}\)

mà 5<12

nên \(\dfrac{-14}{-56}< \dfrac{21}{35}\)

z8: \(10A=\dfrac{10^{201}+10}{10^{201}+1}=1+\dfrac{9}{10^{201}+1}\)

\(10B=\dfrac{10^{202}+10}{10^{202}+1}=1+\dfrac{9}{10^{202}+1}\)

\(10^{201}+1< 10^{202}+1\)

=>\(\dfrac{9}{10^{201}+1}>\dfrac{9}{10^{202}+1}\)

=>\(\dfrac{9}{10^{201}+1}+1>\dfrac{9}{10^{202}+1}+1\)

=>10A>10B

=>A>B

 

 

15 tháng 1 2024

\(a,-\dfrac{5}{7}+1+\dfrac{30}{-7}\le x\le-\dfrac{1}{6}+\dfrac{1}{3}+\dfrac{5}{6}\\ \dfrac{-5+1.7-30}{7}\le x\le\dfrac{-1+1.2+5}{6}\\ -\dfrac{28}{7}\le x\le\dfrac{6}{6}\\ -4\le x\le1\\ Vậy:x\in\left\{-4;-3;-2;-1;0;1\right\}\)

15 tháng 1 2024

\(b,\dfrac{-8}{13}+\dfrac{7}{17}+\dfrac{21}{13}\le x\le-\dfrac{9}{14}+3+\dfrac{5}{-14}\\ \left(\dfrac{21}{13}-\dfrac{8}{13}\right)+\dfrac{7}{17}\le x\le\left(-\dfrac{9}{14}-\dfrac{5}{14}\right)+3\\ 1+\dfrac{7}{17}\le x\le-1+3\\ 1\dfrac{7}{17}\le x\le2\\ Vậy:x=2\)

AH
Akai Haruma
Giáo viên
15 tháng 1 2024

Lời giải:

$\frac{1}{50}> \frac{1}{100}$

$\frac{1}{51}> \frac{1}{100}$

.....

$\frac{1}{98}> \frac{1}{100}$

$\frac{1}{99}> \frac{1}{100}$

$\Rightarrow S> \underbrace{\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}}_{50}=\frac{1}{100}.50=\frac{1}{2}$

15 tháng 1 2024

\(\left(3+3^2+3^3+3^4+...+3^{99}+3^{100}\right)\\ =3.\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\\ =3.4+3^3.4+...+3^{99}.4\\ =4.\left(3+3^3+...+3^{99}\right)⋮4\left(ĐPCM\right)\)

15 tháng 1 2024

TUI CẦN GẤP

 

24 tháng 1 2024

\(\dfrac{15}{34}+\dfrac{1}{3}+\dfrac{19}{34}-\dfrac{4}{3}+\dfrac{3}{7}=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{3}{7}=1-1+\dfrac{3}{7}=\dfrac{3}{7}\)

10 tháng 1 2024

 giúp mik với gấp quá

10 tháng 1 2024

helpp mee huhuhuhu

NV
14 tháng 1 2024

\(\dfrac{1}{n\left(n+1\right)}=\dfrac{1+n-n}{n\left(n+1\right)}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

29 tháng 1 2024

Bài 2: 

a; \(x\) - \(\dfrac{1}{2}\) =  \(\dfrac{3}{10}\).\(\dfrac{5}{6}\)

    \(x\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{4}\)

   \(x\)        = \(\dfrac{1}{4}\) + \(\dfrac{1}{2}\)

   \(x\)        = \(\dfrac{3}{4}\)

Vậy \(x\) = \(\dfrac{3}{4}\)

b; \(\dfrac{x}{5}\) = \(\dfrac{-3}{14}\) \(\times\) \(\dfrac{7}{3}\)

    \(\dfrac{x}{5}\) = \(\dfrac{-1}{2}\)

    \(x\) = \(\dfrac{-1}{2}\) \(\times\) 5

   \(x\) = \(\dfrac{-5}{2}\)

Vậy \(x\) = \(\dfrac{-5}{2}\);

c; \(x\) : \(\dfrac{4}{11}\) = \(\dfrac{11}{4}\) \(\times\) 2

   \(x\) : \(\dfrac{4}{11}\) = \(\dfrac{11}{2}\)

   \(x\) = \(\dfrac{11}{2}\) \(\times\) \(\dfrac{4}{11}\)

   \(x\) = 2

Vậy \(x\) = 2

d; \(x^2\) + \(\dfrac{9}{-25}\)  = \(\dfrac{2}{5}\) : \(\dfrac{5}{8}\)

   \(x^2\) - \(\dfrac{9}{25}\)      =  \(\dfrac{16}{25}\)

   \(x^2\)              = \(\dfrac{16}{25}\) + \(\dfrac{9}{25}\)

   \(x^2\)             = \(\dfrac{25}{25}\)

   \(x^2\)             = 1

  \(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

Vậy \(x\)\(\in\) {-1; 1}

 

29 tháng 1 2024

Bài 3: 

a; A = \(\dfrac{2}{13}\)\(\times\) \(\dfrac{5}{9}\)\(\dfrac{2}{13}\)\(\times\)\(\dfrac{4}{9}\) + \(\dfrac{11}{13}\)

   A = \(\dfrac{2}{13}\) \(\times\)(\(\dfrac{5}{9}\) + \(\dfrac{4}{9}\)) + \(\dfrac{11}{13}\)

  A = \(\dfrac{2}{13}\) \(\times\) \(\dfrac{9}{9}\) + \(\dfrac{11}{13}\) 

A = \(\dfrac{2}{13}\) + \(\dfrac{11}{13}\)

A = 1 

b; B = \(\dfrac{1}{10}\).\(\dfrac{4}{11}\) + \(\dfrac{1}{10}\).\(\dfrac{8}{11}\) - \(\dfrac{1}{10}\).\(\dfrac{1}{11}\)

   B =   \(\dfrac{1}{10}\) x (\(\dfrac{4}{11}\) + \(\dfrac{8}{11}\) - \(\dfrac{1}{11}\))

  B =   \(\dfrac{1}{10}\) x (\(\dfrac{12}{11}\) - \(\dfrac{1}{11}\))

  B =     \(\dfrac{1}{10}\) x  \(\dfrac{11}{11}\)

 B = \(\dfrac{1}{10}\)