Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
Lấy trên (bỏ ) trừ dưới nhé
\(3\left(x^2-y^2\right)=x-y\Leftrightarrow\left(x-y\right)\left[3\left(x+y\right)-1\right]=0\\ \)
\(\hept{\begin{cases}\left(x-y\right)=0\\\left(x+y\right)=1\end{cases}}\)thế vào @ALI \(\hept{\begin{cases}\left(x+y\right)\left(0-3\right)=0\\\left(1.\right)\left(x-y-3\right)=0\end{cases}}\)\(\hept{\begin{cases}x=-y\\x=y+3\end{cases}}\) cho xin 2 k vt
Lấy trên cộng dưới ta được
x2 - y2 = 3x + 3y
<=> (x + y) (x - y - 3) = 0
<=> x = - y hoặc x = y + 3
Thế ngược lại là giải ra
\(\left(1\right)\Leftrightarrow\left(x^2-2y\right)\left(x^2+y^2+2\right)=0\)
\(\Leftrightarrow y=\frac{x^2}{2}\)
Thê vô (2) được
\(2x^2+\left(\frac{x^2}{2}\right)^2+x=14\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2+12x+28\right)=0\)
a) \(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\8\left(x+1\right)-2\left(x+2y\right)=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11\left(x+1\right)=22\\3\left(x+1\right)+2\left(x+2y\right)=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\4y+8=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
b) ĐK : y khác 0
\(\hept{\begin{cases}x+\frac{1}{y}=-\frac{1}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+\frac{3}{y}=-\frac{3}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=-5\\3x+\frac{3}{y}=-\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\-3+\frac{3}{y}=-\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\\frac{3}{y}=\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\left(tm\right)\end{cases}}\)
3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)
Xét phương trình (2) ta có:
\(x^2+\left(y-3\right)x+y^2-4y+4=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)
\(\Leftrightarrow-3y^2+10y-7\ge0\)
\(\Leftrightarrow1\le y\le\frac{7}{3}\)
\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)
Tương tự ta có:
\(0\le x\le\frac{4}{3}\)
\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)
Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)
Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm
1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
Xét phương trình đầu ta có
\(xy+x+y-x^2+2y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)
\(\Rightarrow x=1+2y\)
Thế vào pt dưới ta được
\(\sqrt{2y}\left(y+1\right)=2y+2\)
\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)
Tới đây tự làm tiếp nhé