K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 7 2020

Bạn chú ý gõ đề bằng công thức toán (hộp biểu tượng $\sum$) trên thanh công cụ. Nhìn đề rối mắt thế này thật tình không ai muốn đọc chứ đừng nói đến giúp =)))

2;-2 là căn bậc 6 của 64 vì \(2^6=64;\left(-2\right)^6=64\)

NV
10 tháng 5 2019

\(L=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+x^2}-\sqrt[4]{1-2x}}{x^2+x}=\lim\limits_{x\rightarrow0}\frac{\left(1+x^2\right)^{\frac{1}{3}}-\left(1-2x\right)^{\frac{1}{4}}}{x^2+x}\)

\(=\lim\limits_{x\rightarrow0}\frac{\frac{2}{3}x\left(1+x^2\right)^{-\frac{2}{3}}+\frac{1}{2}\left(1-2x\right)^{-\frac{3}{4}}}{2x+1}=\frac{1}{2}\)

8 tháng 2 2021

\(F=\lim\limits\dfrac{\sqrt[4]{n^4-2n+1}+2n}{\sqrt[3]{3n^3+n}-n}=\lim\limits\dfrac{\sqrt[4]{\dfrac{n^4}{n^4}-\dfrac{2n}{n^4}+\dfrac{1}{n^4}}+\dfrac{2n}{n}}{\sqrt[3]{\dfrac{3n^3}{n^3}+\dfrac{n}{n^3}}-\dfrac{n}{n}}=\dfrac{1+2}{3-1}=\dfrac{3}{2}\)

a: căn bậc hai của một số a không âm là một số x thỏa mãn \(x^2=a\)

b: Căn bậc hai của một số a bất kỳ là một số x sao cho x thỏa mãn \(x^3=a\)

NV
4 tháng 10 2020

\(sinx+\sqrt{3}cosx=1\)

\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

\(sin3x+cos3x=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(3x+\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(3x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow3x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=...\)

26 tháng 8 2021

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

27 tháng 8 2021

Giải hết dùm mik đc k câu 3 luôn

NV
5 tháng 1 2021

Đề đúng chứ bạn?

\(\lim\limits\left(\sqrt[3]{n^2-n}+n\right)=+\infty\) gần như ko phải tính toán gì cả