Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình làm bài 2 : Năm 938 nhé.
Bài 3 : Vậy số học sinh khối 6 là 143 hoặc 179
Con cưa ngọn là con ngựa
Đúng rồi ! Con cưa ngọn là con ngựa đó nhưng mong bạn làm giải ra nhé :)

Bạn tham khảo tại : Câu hỏi của Vu Ngoc Anh - Toán lớp 6 - Học toán với OnlineMath
Link nek : https://olm.vn/hoi-dap/detail/3010313028.html
Ba số nguyên tố có tổng là 106 nên trong ba số này phải có 1 số chẵn => Trong ba số nguyên tố cần tìm có 1 số hạng là số 2.
Tổng hai số còn lại là 106 - 2 = 104.
Gọi 2 số nguyên tố còn lại là a và b (a > b).
Ta có a + b = 104 => Để số a là số nguyên tố lớn nhất nhỏ nhất thì b phải là số nguyên tố nhỏ nhất.
Số nguyên tố b nhỏ nhất là 3 => a = 104 - 3 = 101 cũng là 1 số nguyên tố (thỏa mãn yêu cầu đề bài).
Vậy số nguyên tố lớn nhất thỏa mãn yêu cầu đề bài là 101.

Chiều dài đám đất:
\(60 : 3 \times 4 = 80 \left(\right. c m \left.\right)\)
Diện tích đám đất:
\(80 \times 60 = 4800 \left(\right. c m^{2} \left.\right)\)
Diện tích trồng cây:
\(4800 : 12 \times 7 = 2800 \left(\right. c m^{2} \left.\right)\)
Diện tích đào ao:
\(\left(\right. 4800 - 2800 \left.\right) \times 30 : 100 = 600 \left(\right. c m^{2} \left.\right)\)
Diện tích ao bằng số phần trăm diện tích đám đất là:
\(600 : 4800 = 0 , 125 = 12 , 5\)%

Giả sử số viên bi mà Hoa có là \(x\).
Điều kiện 1:
Khi chia đều \(x\) viên bi vào 63 hộp, thì dư 1 viên. Điều này có thể viết dưới dạng phương trình:
\(x \equiv 1 \left(\right. m o d 63 \left.\right)\)
Tức là \(x = 63 k + 1\), với \(k\) là một số nguyên.
Điều kiện 2:
Nếu thêm vào \(x\) 47 viên bi nữa, tức là số viên bi mới là \(x + 47\), thì chia vừa đủ 67 hộp. Điều này có thể viết dưới dạng phương trình:
\(x + 47 \equiv 0 \left(\right. m o d 67 \left.\right)\)
Tức là \(x + 47 = 67 m\), với \(m\) là một số nguyên.
Bước 1: Kết hợp hai điều kiện
Từ điều kiện 1, ta có:
\(x = 63 k + 1\)
Thay vào điều kiện 2:
\(63 k + 1 + 47 = 67 m\)
Giản ước phương trình:
\(63 k + 48 = 67 m\)\(63 k - 67 m = - 48\)
Bước 2: Giải phương trình Diophant
Ta có phương trình Diophant:
\(63 k - 67 m = - 48\)
Để giải phương trình này, ta sẽ tìm nghiệm của nó bằng cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất (UCLN) của 63 và 67. Vì 63 và 67 là hai số nguyên tố với nhau (UCLN(63, 67) = 1), phương trình này có nghiệm.
Bước 3: Dùng thuật toán Euclid để giải
Áp dụng thuật toán Euclid để giải phương trình \(63 k - 67 m = - 48\):
- Chia 63 cho 67:
\(67 = 1 \times 63 + 4\) - Chia 63 cho 4:
\(63 = 15 \times 4 + 3\) - Chia 4 cho 3:
\(4 = 1 \times 3 + 1\) - Chia 3 cho 1:
\(3 = 3 \times 1 + 0\)
UCLN của 63 và 67 là 1, vì vậy phương trình có nghiệm.
Tiếp theo, ta dùng các bước ngược lại để tìm nghiệm:
- Từ \(1 = 4 - 1 \times 3\), thay vào \(3 = 63 - 15 \times 4\):
\(1 = 4 - 1 \times \left(\right. 63 - 15 \times 4 \left.\right) = 16 \times 4 - 1 \times 63\) - Thay \(4 = 67 - 1 \times 63\) vào:
\(1 = 16 \times \left(\right. 67 - 1 \times 63 \left.\right) - 1 \times 63 = 16 \times 67 - 17 \times 63\)
Vậy nghiệm tổng quát của phương trình \(63 k - 67 m = - 48\) là:
\(k = 16 \times \left(\right. - 48 \left.\right) + 67 n\)
bắt đầu
bánh chưng