K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2024

a) ĐKXĐ: 

\(x-1\ne0\\ < =>x\ne1\)

b) ĐKXĐ: 

\(x-2\ne0\\ < =>x\ne2\)

c) ĐKXĐ: 

\(2a+4\ne0\\ < =>2a\ne-4\\ < =>a\ne\dfrac{-4}{2}=-2\)

d) ĐKXĐ: 

\(x+y\ne0< =>x\ne-y\)

3 tháng 1 2016

a) Để phân thức được xác định thì x2-4\(\ne\) 0

                                               =>(x+2)(x-2)\(\ne\) 0

                                               =>x\(\ne\)-2;x\(\ne\)2

Vậy tại x\(\ne\)-2;x\(\ne\)2 thì phân thức trên đc xác định.

b)y=\(\frac{3x+6}{x^2-4}\)=\(\frac{3\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\)=\(\frac{3}{x-2}\)

c)Thay x=5 vào phân thức ta có:

y=\(\frac{3}{5-2}\)=\(\frac{3}{3}\)=1

Vậy y=1 tại x=5

 

28 tháng 11 2019

a) Giá trị của biểu thức A đã co xác định 

\(\Leftrightarrow\hept{\begin{cases}x^2+x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)\ne0\\x\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)

Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)thì giá trị của biểu thức A đã cho được xác định .

ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)

b)

+) \(A=\left(\frac{1}{x^2+x}+\frac{1}{x+1}\right).x^2\)

\(A=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{x+1}\right).x^2\)

\(A=\frac{1+x}{x\left(x+1\right)}.x^2\)

\(A=\frac{1}{x}.x^2=x\)

+) 

Ta có :

\(A\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

<=> x = 0 ( không thỏa mãn ĐKXĐ) hoặc x = 1( thỏa mãn ĐKXĐ) hoặc x = -1 ( Không thỏa mãn ĐKXĐ)

Vậy với x = 1 thì \(A\left(x^2-1\right)=0\)

28 tháng 11 2019

\(a.ĐKXĐ:\hept{\begin{cases}x^2+x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)\ne0\\x\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0vax\ne-1\\x\ne-1\end{cases}\Leftrightarrow}x\ne0vax\ne-1}\)

\(A=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{x+1}\right).x^2\)

\(=\frac{1+1x}{x\left(x+1\right)}.x^2\)

\(=\frac{1+1x}{x^2+x}.x^2\)

\(=\frac{1+1x}{x}\) với \(x\ne0\)và \(x\ne-1\)

Bài 2: 

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1^3-3xy+3xy=1\)

Bài 3:

\(M=x^6-x^4-x^4+x^2+x^3-x\)

\(=x^3\left(x^3-x\right)-x\left(x^3-x\right)+\left(x^3-x\right)\)

\(=8x^3-8x+8\)

\(=8\cdot8+8=72\)

5 tháng 4 2022

`Answer:`

1) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=[x\left(x+3\right)][\left(x+1\right)\left(x+2\right)]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

2) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)

\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)

\(=[\left(12x^2+11x+0,5\right)+1,5][\left(12x^2+11x+0,5\right)-1,5]-4\)

\(=\left(12x^2+11x+0,5\right)^2-\left(1,5\right)^2-4\)

\(=\left(12x^2+11x+0,5\right)^2-\left(2,5\right)^2\)

\(=\left(12x^2+11x+0,5-2,5\right)\left(12x^2+11x+0,5+2,5\right)\)

\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

3) \(\left(x^2+6x+5\right)\left(x^2+10x+21\right)+15\)

\(=\left(x^2+x+5x+5\right)\left(x^2+3x+7x+21\right)+15\)

\(=\left(x+1\right)\left(x+5\right)\left(x+3\right)\left(x+7\right)+15\)

\(=[\left(x+1\right)\left(x+7\right)][\left(x+5\right)\left(x+3\right)]+15\)

\(=\left(x^2+x+7x+7\right)\left(x^2+3x+5x+15\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(v=x^2+=8x+11\)

Đa thức có dạng sau: \(\left(v-4\right)\left(v+4\right)+15\)

\(=v^2-4^2+15\)

\(=v^2-1\)

\(=\left(v+1\right)\left(v-1\right)\)

\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

4) \(\left(x^2-a\right)^2-6x^2+4x+2a\)

\(=\left(x^2-a\right)\left(x^2-a\right)-6x^2+4x+2a\)

\(=\left(x^2-a\right).x^2-a\left(x^2-a\right)-6x^2+4x+2a\)

\(=x^4-ax^2-a.\left(x^2-a\right)-6x^2+4x+2a\)

\(=x^4-ax^2-\left(ax^2-aa\right)-6x^2+4x+2a\)

\(=x^4-2ax^2+a^2-6x^2+2a+4x\)

6) \(a^2-b^2-c^2+2bc-2a+1\)

\(=\left(a^2-2a+1\right)-\left(b^2-2bc+c^2\right)\)

\(=\left(a-1\right)^2-\left(b-c\right)^2\)

\(=\left(a-b+c-1\right)\left(a+b-c-1\right)\)

7) \(4a^2-4b^2+16bc-16c^2\)

\(=4a^2-\left(4b^2-16bc+16c^2\right)\)

\(=\left(2a\right)^2-\left(2b-4c\right)^2\)

\(=\left(2a-2b+4c\right)\left(2a+2b-4c\right)\)

\(=2.\left(a-b-2c\right).2\left(a+b-2c\right)\)

\(=4\left(a-b-2c\right)\left(a+b-2c\right)\)

29 tháng 8 2018

1)\(21x^2y-12xy^2=xy.\left(21x-12y\right)\)

2)\(x^3+x^2-2x=x.\left(x^2+x-2\right)\)

3)\(3x.\left(x-1\right)+7x^2\left(x-1\right)=\left(x-1\right).\left(3x+7x^2\right)=x.\left(x-1\right)\left(3+7x\right)\)

15)\(\left(2a+3\right)^2-\left(2a+1\right)^2=\left(2a+3-2a-1\right)\left(2a+3+2a+1\right)=2.\left(4a+4\right)=8\left(a+1\right)\)

14) \(-4y^2+4y-1=-\left[\left(2y\right)^2-2.2y.1+1^2\right]=-\left(2y-1\right)^2\)

13) \(x^6+1=\left(x^2\right)^3+1=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

12) \(\left(x+1\right)^2-\left(y+6\right)^2=\left(x+1-y-6\right)\left(x+1+y+6\right)=\left(x-y-5\right)\left(x+y+7\right)\)

4) \(3x\left(x-a\right)+4a\left(a-x\right)=3x.\left(x-a\right)-4a\left(x-a\right)=\left(x-a\right)\left(3x-4a\right)\)

Sao nhiều thế!

29 tháng 8 2018

Đúng là nhiều thật , dù sao cx cảm ơn bn nhìn nha!!!

29 tháng 8 2018

Bài 2;

\(a)x^4-16x=0\Rightarrow x^4=16x\Leftrightarrow x^3=16\Leftrightarrow x=\sqrt[3]{16}\)

29 tháng 8 2018

\(c)4x^2-\frac{1}{4}=0\Leftrightarrow4x^2=\frac{1}{4}\Leftrightarrow x^2=\frac{1}{16}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{1}{4}\end{cases}}\)

1 tháng 11 2019

a, điều kiện xác định là \(x\ne2;x\ne-2;x\ne0\)

\(b,\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)

\(=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\frac{6}{x+2}\)

\(=\frac{x-2\cdot\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)

\(=-\frac{6}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{6}\)

\(=-\frac{1}{x-2}=\frac{1}{2-x}\)

c, Để A>0 

mình làm hơi tắt nên chịu khó hiểu

1 tháng 11 2019

thank nha

5 tháng 10 2019

a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)

b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)

\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)

\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2