K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Tìm giá trị lớn nhất – nhỏ nhất của một biểu thức chứa dấu giá trị tuyệt đối: 

 Dạng 1: Sử dụng tính chất không âm của giá trị tuyệt đối:

 * Cách giải chủ yếu là từ tính chất không âm của giá trị tuyệt đối vận dụng tính chất của bất đẳng thức để đánh giá giá trị của biểu thức
 

  Dạng 2: Xét điều kiện bỏ dấu giá trị tuyệt đối xác định khoảng giá trị của biểu thức

chúc bạn học tốt!

 

19 tháng 4 2022

*\(x\ge\dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=2x-1\)

\(D=\left(2x-1\right)^2-3\left(2x-1\right)+2=\left(2x-1\right)^2-2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1-\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{5}{4}\left(1\right)\)

*\(x< \dfrac{1}{2}\Leftrightarrow\left|2x-1\right|=-2x+1\)

\(D=\left(2x-1\right)^2+3\left(2x-1\right)+2=\left(2x-1\right)^2+2.\dfrac{3}{2}\left(2x-1\right)+\dfrac{9}{4}-\dfrac{1}{4}=\left(2x-1+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(2x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)\(D_{min}=-\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\left(2\right)\)
-Từ (1) và (2) suy ra \(D_{min}=-\dfrac{1}{4}\Leftrightarrow x\in\left\{\dfrac{5}{4};\dfrac{-1}{4}\right\}\)

 

19 tháng 4 2022

cảm ơn cậu nha! yeu

4 tháng 3 2020

a) \(\left|x-5\right|=x-5\)

Ta có: \(VT\ge0\Rightarrow x-5\ge0\)

\(\Rightarrow\left|x-5\right|=x-5\)

Phương trình trở thành \(x-5=x-5\)(đúng)

Vậy \(x\ge0\)

4 tháng 3 2020

b) Xét khoảng \(x< 2\)

PTTT: \(\left(2-x\right)+\left(3-x\right)=x\Leftrightarrow5=3x\)

\(\Leftrightarrow x=\frac{5}{3}\)(tm)

  Xét khoảng \(2\le x\le3\)

PTTT: \(\left(x-2\right)+\left(3-x\right)=x\Leftrightarrow x=1\)(L)

  Xét khoảng x > 3

PTTT: \(\left(x-2\right)+\left(x-3\right)=x\Leftrightarrow x=5\left(tm\right)\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{5;\frac{5}{3}\right\}\)

20 tháng 9 2019

Quá dễ D:

\(B=4x^2-4x=4\left(x^2-x\right)=4\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=4\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=4\left(x-\frac{1}{2}\right)^2-1\ge-1\)

Vậy GTNN của B là -1\(\Leftrightarrow x=\frac{1}{2}\)

\(C=-x^2-x+1=-\left(x^2+x-1\right)\)

\(=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)\)

\(=-\left[\left(x+\frac{1}{2}\right)^2-\frac{5}{4}\right]=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\)

...

20 tháng 9 2019

ukm bn thì dễ mk thì khó :*(

4 tháng 4 2020

Ta có : \(B=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)

Xét \(x>12\)thì B < 0                             (1)

Xét x < 12 thì mẫu 12 - x là số nguyên dương . Phân số B có tử và mẫu đều dương,tử không đổi nên

B lớn nhất \(\Leftrightarrow\)mẫu 12 - x nhỏ nhất \(\Leftrightarrow\)12 - x = 1 \(\Leftrightarrow\)x = 11       

Thay x = 11 ta có : \(2+\frac{3}{12-11}=2+\frac{3}{1}=5\)

Khi đó B = 5        (2)

So sánh 1 và 2 , ta thấy GTLN của B bằng 5 khi và chỉ khi x = 11