K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)

\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)

\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)

\(\Rightarrow2A=3^{201}-1\)

\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)

Vậy A < B

7 tháng 12 2019

Ta có : A = 1 + 3 + 3+ ... + 3200

\(\Leftrightarrow\)2A = 3 + 3+ 33 + ... + 3201

Lấy 2A - A = ( 3 + 32 + 33 + ... + 3201 ) - ( 1 + 3 + 3+ ... + 3200 )

\(\Rightarrow\)A = 3201 - 1

Ta thấy : 3201 - 1 < 3201

\(\Leftrightarrow\)A < B

Bài 1:

a: Sửa đề: 1/3^200

1/2^300=(1/8)^100

1/3^200=(1/9)^100

mà 1/8>1/9

nên 1/2^300>1/3^200

b: 1/5^199>1/5^200=1/25^100

1/3^300=1/27^100

mà 25^100<27^100

nên 1/5^199>1/3^300

13 tháng 12 2018

a, \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{200}-1\right)\)

\(-A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{200}\right)\)

\(-A=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{199}{200}\)

\(-A=\frac{1}{200}\)

\(A=\frac{-1}{200}>\frac{-1}{199}\)

23 tháng 7 2017

a) A = (200 - 1) . 201 = 200 . 201 - 201

   B = (201-1) . 200 = 201.200 - 200

201 > 200 => 200.201 - 201 < 201.200 - 200

=> A < B

b) C = ( 34 + 1).53 - 18 = 34.53 + 53 - 18 = 34.53 + 35 = D

=> C = D

23 tháng 7 2017

a ) ta có :

\(A=199.201=199\left(200+1\right)=199.200+199\)

\(B=200.200=200.\left(199+1\right)=199.200+200\)

Vì \(199.200+200>199.200+199\) nên \(B>A\)

b ) Ta có :

\(C=35.53-18=53.34+53-18=53.34+35=D\)

Vậy \(C=D\)

22 tháng 2 2017

vế phải đâu?

22 tháng 2 2017

ko có vế pk

3 tháng 10 2018

a) \(2^{24}< 3^{16}\)

b) \(3^{34}>5^{20}\)

c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)

d) \(199^{20}>200^{15}\)

C = 1/200

=> C^2 = 1/400 < 1/201

=> C^2 < 1/201 (đpcm)

K nhé!

7 tháng 4 2016

Ta rút gọn C = 1/200

=> C^2 = 1/400

Mà 1/400 < 1/201

=> C^2 < 1/201 (đpcm)

Ai k mk mk k lại !!