Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)
\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)
\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)
\(\Rightarrow2A=3^{201}-1\)
\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)
Vậy A < B
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
a, \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{200}-1\right)\)
\(-A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{200}\right)\)
\(-A=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{199}{200}\)
\(-A=\frac{1}{200}\)
\(A=\frac{-1}{200}>\frac{-1}{199}\)
a) A = (200 - 1) . 201 = 200 . 201 - 201
B = (201-1) . 200 = 201.200 - 200
201 > 200 => 200.201 - 201 < 201.200 - 200
=> A < B
b) C = ( 34 + 1).53 - 18 = 34.53 + 53 - 18 = 34.53 + 35 = D
=> C = D
a ) ta có :
\(A=199.201=199\left(200+1\right)=199.200+199\)
\(B=200.200=200.\left(199+1\right)=199.200+200\)
Vì \(199.200+200>199.200+199\) nên \(B>A\)
b ) Ta có :
\(C=35.53-18=53.34+53-18=53.34+35=D\)
Vậy \(C=D\)
a) \(2^{24}< 3^{16}\)
b) \(3^{34}>5^{20}\)
c) \(\left(3\cdot24\right)^{100}< 3^{300}+4^{300}\)
d) \(199^{20}>200^{15}\)
C = 1/200
=> C^2 = 1/400 < 1/201
=> C^2 < 1/201 (đpcm)
K nhé!