Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1^2 -x2^2 = (x1 -x2).(x1+x2)
Sau đó bạn dùng viet thay vào pt trên r tính. Thực ra cái này nó phải tuỳ thuộc vào đề bài bạn ạ :)
\(X_1^2-X_2^2=\left(X_1+X_2\right).\left(X_1-X_2\right)=\left(X_1+X_2\right).\sqrt{\left(X_1-X_2\right)^2}.\)
\(=\left(X_1+X_2\right).\sqrt{\left(X_1+X_2\right)^2-4X_1.X_2}\)
\(x^2-2x-\sqrt{3}+1=0\)
\(\Delta'=1^2+\sqrt{3}-1=\sqrt{3}>0\)
⇒ Phương trình có hai nghiệm phân biệt
Theo Viét : \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=1-\sqrt{3}\end{matrix}\right.\)
Ta có : \(A=x_1^2.x_2^2-2x_1x_2-x_1-x_2\)
\(=\left(x_1x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)
\(=\left(1-\sqrt{3}\right)^2-2\left(1-\sqrt{3}\right)-2=4-2\sqrt{3}-2+2\sqrt{3}-2=0\)
Vậy....
\(x_1^2-x_2^2=\left(x_1-x_2\right)\left(x_1+x_2\right)\)
\(=\pm\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\cdot\left(x_1+x_2\right)\)
\(x_1^3-x_2^3\)
\(=\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)\)
\(=\pm\left[\left(x_1+x_2\right)^2-4x_1x_2\right]^3+3\cdot x_1x_2\cdot\pm\left(\left(x_1+x_2\right)^2-4x_1x_2\right)\)
Phương trình : \(x^2-2mx+2m-3=0\left(1\right)\)
Xét : \(\Delta=m^2-\left(2m-3\right)=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2>0,\forall m\)
=> Phương trình 1 luôn có 2 ngiệm phân biệt x1, x2
\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\)
Áp dụng định lí Vi ét cho phương trình (1) Ta có:
x1+x2=2m; x1.x2=2m-3
Khi đó: \(A=\left(2m\right)^2-2.\left(2m-3\right)=\left(2m\right)^2-2.2m+1+5=\left(2m-1\right)^2+5\ge5\)
'=" xảy ra <=> 2m-1=0 <=> m=1/2
Vậy : min A=5 khi và chỉ khi m=1/2
Thông thường thì ko có cách biến đổi cụ thể, phải tùy thuộc vào hiệu này âm hay dương mới biến đổi được, ví dụ nếu biết \(x_1-x_2\ge0\) thì ta có thể biến nó thành \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)