K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

 

x>0; y >0

=> 2x +1 >/3

và 2y+1 >/3

=>(2y+1)(2x+1) =15 = 3.5  ( x;y có vai trò như nhau)

=> 2y +1 =3 => y =1

    2x +1 =5 => x = 2 

Vậy (x+1)(y+1) = (2+1)(1+1) = 3.2 =6

và (3y+1)(3x+1) = (3+1)(3.2+1) =4.7 =28

     

22 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

23 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

18 tháng 2 2021

a, Xét : \(\frac{x}{-30}=-\frac{12}{20}=-\frac{3}{5}\Leftrightarrow5x=90\Leftrightarrow x=18\)

Xét : \(\frac{-36}{y}=\frac{-3}{5}\Leftrightarrow3y=180\Leftrightarrow y=60\)

Vậy \(x=18;y=60\)

b, \(\frac{x-1}{7}=\frac{2y+5}{3}\)và \(x+2y=-16\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x-1}{7}=\frac{2y+5}{3}=\frac{x+2y-1+5}{7+3}=\frac{-16+4}{10}=\frac{-12}{10}=-\frac{6}{5}\)

\(\Leftrightarrow\frac{x-1}{7}=-\frac{6}{5}\Leftrightarrow5x-5=-42\Leftrightarrow5x=-37\Leftrightarrow x=-\frac{37}{5}\)

\(\Leftrightarrow\frac{2y+5}{3}=-\frac{6}{5}\Leftrightarrow10y+25=-18\Leftrightarrow10y=-43\Leftrightarrow y=-\frac{43}{10}\)

7 tháng 1 2018

2)

Tổng của 2 số là 2009

=> Trong 2 số phải có 1 số chẵn và 1 số lẻ

Mà số nguyên tố chẵn duy nhất là 2

=> 1 số là 2. Số còn lại là:

      2009 - 2 = 2007 không là số nguyên tố

=> Tổng của 2 số nguyên tố không thể bằng 2009.

7 tháng 1 2018

1) 

Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)

Với p = 3 => p + 2 = 3 + 2 = 5 là  SNT

                => p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)

Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)

Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3

=> p + 2 là hợp số (loại)

Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3

=> p + 4 là hợp số (loại)

Vậy p = 3

9 tháng 1 2024

loading...