Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét chữ số tận cùng:
A=200400
Vì một số chính phương luôn tận cùng bằng 0,1,4,5,6,9 nên A là số chính phương (A có tận cùng bằng 0)
B=20012001
Vì các số tự nhiên tận cùng bằng 0,1,5,6 khi nâng lên lũy thừa bất kì vẫn giữ nguyên chữ số tận cùng của nó
Nên B=20012001 tận cùng bằng 1
=>B là số chính phương
a) A = 2004000 => tổng các chữ số của A là 2 + 0 + 0 + 4 + 0 + 0 + 0 = 6 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
b) B = 20012001 là lũy thừa mũ lẻ, không là số chính phương
a) A = 2004000 => tổng các chữ số của A là 2 + 0 + 0 + 4 + 0 + 0 + 0 = 6 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
b) B = 20012001 là lũy thừa mũ lẻ, không là số chính phương
1.
Ta thấy: \(A=3+3^2+3^3+...+3^{20}\)
\(A=3\left(1+3+3^2+...+3^{19}\right)⋮3\)
Vì \(3^3+3^4+...+3^{20}=3^2\left(1+3+...+3^{19}\right)\)
\(=81\left(1+3+...+3^{19}\right)⋮9\)
Nhưng \(3⋮̸9\) nên \(A=3+3^2+3^3+...+3^{20}⋮9̸\)
Do \(A⋮3\) nhưng \(A⋮̸9\left(3^2\right)\) nên A ko phải là số chính phương.
3.
\(a+b+1=111....1155....56⋮2\)
(n cs 1)(n-1 cs 5)
Vì \(56⋮4\) nên \(a+b+1⋮4\)
\(Do\) \(a+b+1⋮2;⋮4\) nên \(a+b+1\) là scp.
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
B ko phai SCP vi B= 20012000 *2001 . theoDLSCP thi 2001 phai la SCP the nhung no chia het cho 3 nhunhg khong chia het cho 9 nen ko la SCP