\(55555....551\) ( 1996 chữ số 5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số chính phương là số nguyên có căn bậc 2 là một số nguyên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số nguyên khác. 
Công thức!

21 tháng 9 2016

@.com.vn

25 tháng 9 2016

Hoàng Lê Bảo Ngọc

25 tháng 9 2016

Hoàng Lê Bảo Ngọc

20 tháng 6 2016

a/ Với k = 0 thì A = 1 + 1 + 1 + 1 = 4 = 22, là số chình phương, vô lí

Mk sửa thành k thuộc N*, k chẵn

A = 19k + 5k + 1995k + 1996k

A = (...1) + (...5) + (..5) + (...6)

A = (...6) + (...5) + (...6)

A = (...1) + (...6) = (...7), không là số chình phương

b/ B = 20042004k + 2001

Với k = 0, B = 20042004.0 + 2001 = 20040 +2001 = 1 + 2001 = 2002, không là số chính phương

Với k khác 0, cách 1: Vì 2004 chia hết cho 3 => 20042004k chia hết cho 9 mà 2001 chia hết cho 3 mà không chia hết cho 9

=> B chia hết cho 3 mà không chia hết cho 9, không phải số chính phương

Cách 2: B = 20042004k + 2001

B = (20044)501k + 2001

B = (...6)501k + 2001

B = (...6) + 2001

B = (...7), không là số chính phương

29 tháng 3 2020

b, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1994}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)

=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1994}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)

=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)

=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)

=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)=0\)

=> \(x-2004=0\)

=> \(x=2004\)

Vậy phương trình có tập nghiệm là \(S=\left\{2004\right\}\)

a) Sửa đề: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

Ta có: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)

\(\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)

\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\)

\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)

\(\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)

\(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\)

nên x+36=0

hay x=-36

Vậy: x=-36

AH
Akai Haruma
Giáo viên
23 tháng 3 2019

Lời giải:

Đặt \(\underbrace{111....1}_{n}=a\Rightarrow 9a+1=1\underbrace{00....0}_{n-1}=10^{n}\)

Khi đó:

\(\underbrace{33....3^2}_{n}+\underbrace{5...5}_{n-1}\underbrace{444...4^2}_{n}\)

\(=(\underbrace{333....3}_{n})^2+(\underbrace{55...5}_{n-1}.10^n+\underbrace{4444....4}_{n})^2\)

\(=(\underbrace{333....3}_{n})^2+\left(\frac{\underbrace{55...5}_{n}-5}{10}.10^n+\underbrace{4444....4}_{n}\right)^2\)

\(=(3a)^2+(\frac{5a-5}{10}.(9a+1)+4a)^2\)

\(=(3a)^2+(\frac{9a^2-1}{2})^2=9a^2+\frac{81a^4+1-18a^2}{4}\)

\(=\frac{81a^4+1+18a^2}{4}=\frac{(9a^2+1)^2}{4}=\left(\frac{9a^2+1}{2}\right)^2\) là số chính phương vì \(\frac{9a^2+1}{2}\in\mathbb{Z}\) )

Ta có đpcm.

Y
21 tháng 3 2019

Ribi Nkok Ngok, Khôi Bùi , Phùng Tuệ Minh, Nguyễn Thành Trương

Nguyen, Nguyễn Ngô Minh Trí, Akai Haruma

Help me!

9 tháng 2 2019

Ta có :

\(\dfrac{1997^2-1996^2}{1997^2+1996^2}=\dfrac{1.\left(1997+1996\right)}{1997^2+1996^2}=\dfrac{3993}{1997^2+1996^2}\)

Lại có : \(\dfrac{1}{3993}=\dfrac{3993}{3993^2}\)

Do \(3993^2=\left(1997+1996\right)^2>1997^2+1996^2\)

\(\Rightarrow\dfrac{3993}{3993^2}< \dfrac{3993}{1997^2+1996^2}\)

\(\Rightarrow\dfrac{1}{3993}< \dfrac{1997^2-1996^2}{1997^2+1996^2}\)

29 tháng 1 2020

ko vt lại đề 

=> (x-1)/15 -133 + ( x-5)/10 -197 + x/5 -392 -2019 =0

=> (x-1)/15 + (x-5)/10 + x/5 - 2741=0

=> (2x-2)/30 + (3x-15)/30 + 6x/30 =2741

=> ( 2x-2+3x-15+6x)/30 =2741

=> 11x-17=82230

=> 11x= 82247

=> x= 7477

vì 7477 là số nguyên => nghiệm của phương trình là số nguyên 

Vậy....