Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn sai đầu bài rồi ?? sao lại liên quan đến d và e mik chưa hiểu lắm
mik cx ko bt nưa! thầy mik biết như thế mà!
Mà mik cx ko bt cái chỗ \(\frac{a}{b}\)= \(\frac{a+c}{b+c}\) ko bt mik có đúng ko nữa cơ
Các bn lm ơn lm nhanh hộ tui dc ko? Tui đag cần rất gấp đó các bn ơi!
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) \(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
+) \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\) \(\Rightarrow\frac{1}{a}=\frac{1}{c}\) => a = c (1)
+) \(\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)\(\Rightarrow\frac{1}{b}=\frac{1}{a}\) => a = b (2)
Từ (1), (2) => a = b = c
Lại có: (a - b)3 + (b - c)3 + (c - a)3 = (a - a)3 + (b - b)3 + (c - c)3 = 03 + 03 + 03 = 0
đặt a/b=c/d là k
suy ra a=k.b ,c=d.k
Suy ra a-b/b=k.b-b/b=b.(k-1)/b=k-1
c-d/d=k.d-d/d=d.(k-1)/d=k-1
từ đó suy ra a-b/b=c-d/d
Ta có: \(\frac{a}{b}=\frac{c}{d}=k\left(k\ne0\right)\)\(\Rightarrow\)a=bk ; c=dk
xét : \(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)(1)
xét : \(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)(2)
từ 1,2 \(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)
bn ơi mk nghĩ là bn vik nhầm đề rồi
mk chỉ bik lm vs đề này thôi
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}\Rightarrow2009-\frac{b}{a}=2009-\frac{d}{c}\Rightarrow\frac{2009a-b}{a}=\frac{2009c-d}{c}.\)
Ta có:\(\frac{a}{b}=\frac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\)
\(\Leftrightarrow ab+ac=ab+bc\)
\(\Leftrightarrow ac=bc\)
\(\Leftrightarrow a=b\)
Bai nay chac gi da thi hoc ki