Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng BĐT Bunhiacopski:
Ta có: \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)
Mà \(\left(a+c\right)^2+\left(b+d\right)^2\)
\(=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)
\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)
\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\) (Đpcm)
Câu hỏi của Hoàng Khánh Linh - Toán lớp 8 - Học toán với OnlineMath copy nhớ ghi nguồn
A= 1, B= 2, B=3
x= 8, y=5, z=3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A B C có bội số chung nhỏ nhất là 6
1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)
\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)
\(=\sqrt{4}=2\)
1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{25}=5\)
a) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{6}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{6}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)=2\sqrt{2}\)
b) Tương tự
b) \(\sqrt{7-2\sqrt{10}}\) - \(\sqrt{7+2\sqrt{10}}\)
= \(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
= \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
= \(\left(\sqrt{5}-\sqrt{2}\right)\) - \(\left(\sqrt{5}+\sqrt{2}\right)\)
= \(\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
= \(-2\sqrt{2}\)
\(\dfrac{\sqrt{\dfrac{-\left(2\right)^5}{5^3.5^2}.\dfrac{-\left(5\right)^3}{2^9}.5^2}}{\sqrt[3]{\dfrac{-\left(3\right)^3}{2^6}.\dfrac{\left(5\right)^2}{3^2.2^5}.\dfrac{\left(5\right)^4}{3^4}}}=\dfrac{\sqrt{\dfrac{1}{2^4}}}{\sqrt[3]{\dfrac{-\left(5\right)^6}{2^{12}.3^3}}}=\dfrac{\dfrac{1}{4}}{\sqrt[3]{\left(\dfrac{-5^2}{2^4.3}\right)^3}}=\dfrac{\dfrac{1}{4}}{\dfrac{-25}{48}}=\dfrac{-12}{25}\)
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
ta có : \(a+b+c+d=7\Leftrightarrow b+c+d=7-a\Leftrightarrow\left(b+c+d\right)^2=\left(7-a\right)^2\Leftrightarrow b^2+c^2+d^2+2bc+2cd+2bd=\left(7-a\right)^2\)
lại có: \(b^2+c^2+d^2+2bc+2cd+2bd\le b^2+c^2+d^2+b^2+c^2+c^2+d^2+b^2+d^2=3\left(b^2+c^2+d^2\right)=3\left(13-a^2\right)\)
HAY \(\left(7-a\right)^2\le3\left(13-a^2\right)\Leftrightarrow49-14a+a^2\le39-3a^2\Leftrightarrow4a^2-14a+10\le0\Leftrightarrow2a^2-7a+5\le0\Leftrightarrow\left(2a-5\right)\left(a-1\right)\le0\Leftrightarrow1\le a\le\dfrac{5}{2}\)
Vậy GTLN của a là 5/2 , GTNN của a là 1
Trung bình cộng của giá trị lớn nhất và nhỏ nhất của a là (1+5/2):2=7/4
bạn ở trên làm thiếu bước cuối rồi kìa