K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2023

a) \(\dfrac{n}{n+1}\) là phân số tối giản khi : \(n;n+1⋮1\)

\(\Rightarrow n-\left(n+1\right)⋮1\)

\(\Rightarrow n-n-1⋮1\Rightarrow-1⋮1\) (luôn đúng)

\(\Rightarrow\dfrac{n}{n+1}\) là phân số tối giản

b) \(\dfrac{2n+1}{2n+3}\) là phân số tối giản khi \(2n+1;2n+3⋮1\)

\(\Rightarrow2n+1-\left(2n+3\right)⋮1\)

\(\Rightarrow2n+1-2n-3⋮1\)

\(\Rightarrow-2⋮1\) (luôn đúng)

\(\Rightarrow\dfrac{2n+1}{2n+3}\) là phân số tối giản

18 tháng 7 2023

a) ��+1n+1n là phân số tối giản khi : �;�+1⋮1n;n+11

⇒�−(�+1)⋮1n(n+1)1

⇒�−�−1⋮1⇒−1⋮1nn1111 (luôn đúng)

⇒��+1n+1n là phân số tối giản

b) 2�+12�+32n+32n+1 là phân số tối giản khi 2�+1;2�+3⋮12n+1;2n+31

⇒2�+1−(2�+3)⋮12n+1(2n+3)1

⇒2�+1−2�−3⋮12n+12n31

⇒−2⋮121 (luôn đúng)

⇒2�+12�+32n+32n+1 là phân số tối giản

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

9 tháng 4 2017

Goi d la UC(n+1,2n+3)

Ta co:n+1:d suy ra 2(n+1):d suy ra 2n+2 :d

Va 2n+3:d

suy ra 2n+3-(2n+2)

2n+3-2n-2:d

1:d suy ra d thuoc U(1)=(1;-1)

suy ra (2n+2,2n+3)=1

Vi 2n+2 va 2n+3 co 2 uoc la 1va -1

nen phan so n+1/2n+3 toi gian

7 tháng 3 2023

a) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

17 tháng 7 2023

) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

 Đúng(0)   Cao yến Chi Cao yến Chi14 tháng 4 2020 lúc 12:42  

bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản

A=2n+1/2n+2

B=2n+3/3n+5

Bài 2: 

a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản

b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản

giúp mk với 

mk sẽ tick cho!!

24 tháng 3 2020

Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath

3 tháng 5 2016

sao ma kho 

27 tháng 1 2022

26 tháng 2 2017

a) n = 0 ; 4 ; 3 ; 2 ; 100 ; ...

b) n = 5 ; 4 ; 1 ; ...

c) n = 0 ; ...

bạn tự giải lấy các số còn '' nhại '' nghen

4 tháng 3 2017

a) để 2n+3/4n+1 là phân số tối giản thì ta đi chứng minh 2n+3 và 4n+1 là nguyên tố cùng nhau .

=>UCLN ( 2n+3;4n+1 ) = d

ta có : 2n+1 chia hết cho d

          4n+1 chia hết cho d

=>      2(2n+1) chia hết cho d

          4n+1 chia hết cho d 

=> 4n+2 chia hết cho d  

     4n+1 chia hết cho d 

=>     [( 4n+2)-(4n+1)] chia hết cho d

=>      1 chia hết cho d 

=>     d = 1

=> ucln ( 2n+3; 4n+1)=1

vì ucln ( 2n+3;4n+1)=1 nên 2n+3=1;4n+1=1 

                                         2n=1-3   4n=1-1

                                         2n=-2    4n=0

                                           n=-1(loại)  n=0 ( chọn)

vậy để 2n+3/4n+1 là phân số tối giản thì n=0

tớ nghĩ thế ko biết có đúng ko !

nhưng nếu cảm thấy đúng thì nhớ tk cho tớ nhé 

mấy phần còn lại thì các bạn cứ làm như phần a nhé !

27 tháng 4 2020

Câu 11. Không khí nóng nhẹ hơn không khí lạnh vì

          A. khối lượng riêng của không khí nóng nhỏ hơn.

          B. khối lượng của không khí nóng nhỏ hơn.

          C. khối lượng của không khí nóng lớn hơn.

          D. khối lượng riêng của không khí nóng lớn hơn.

Câu hỏi của Đỗ Quynhg Anh - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo bài nhé !!!

28 tháng 3 2020

oke, mình cảm ơn nhé