K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

Đáp án D

Xét hàm số  y = x 3 - 3 m x 2 - 2 x - m  trên khoảng (0;1)  y ' = 3 x 2 - 6 m x - 2

Hàm số đã cho liên tục và nghịch biến trên khoảng (0;1) khi và chỉ khi   y ' ≤ 0 , ∀ x ∈ 0 ; 1

Khi đó  3 x 2 - 6 m x - 2 ≤ 0 ; ∀ x ∈ 0 ; 1 ⇔ 6 m ≥ 3 x 2 - 2 x ; ∀ x ∈ 0 ; 1 ⇔ 6 m ≥ m a x 0 ; 1 3 x 2 - 2 x

Xét hàm số f x = 3 x 2 - 2 x  trên [0;1], ta có f ' x = 3 + 2 x 2 > 0 , ∀ x ∈ 0 ; 1  suy ra f(x) là hàm số đồng biến trên [0;1].

Do đó m a x 0 ; 1 f x = f 1 = 1 . Khi đó  6 m ≥ 1 ⇔ m ≥ 1 6 .

26 tháng 1 2016

+TXĐ: X\(\in\)R

+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)

+y''=6(x-1)=> y' = 0 khi x = 1;y=2

+

x       -\(\infty\)                   0                      1                        2                        +\(\infty\)
y'                 +            0           -                           -        0       +
y

 

26 tháng 1 2016

2.  y' = 3x2 - 6x + m <0 khi x thuộc ( -1; 3)  => m/3 =-3 =>  m =-9

27 tháng 2 2016

với \(m=0\) : PT \(\left(1\right)\Leftrightarrow\)     \(-2x+1=0\)    \(\Leftrightarrow x=\frac{1}{2}\in\left(0;1\right)\)

với \(m\ne0\) : PT \(\left(1\right)\) có đúng 1 nghiệm \(\in\left(0;1\right)\)

                           \(\Leftrightarrow f\left(0\right).f\left(1\right)<0\)

( để ý: \(\Delta'=\left(m+1\right)^2-m=\)\(m^2+m+1>0,\text{∀}x\in R\))

                           \(\Leftrightarrow m-2\left(m+1\right)+1<0\) \(\Leftrightarrow m>-1\)

vậy \(m>-2\) là kết quả cần tìm

27 tháng 2 2016

với m=0m=0 : PT (1)⇔(1)⇔     −2x+1=0−2x+1=0    ⇔x=12∈(0;1)⇔x=12∈(0;1)

với m≠0m≠0 : PT (1)(1) có đúng 1 nghiệm ∈(0;1)∈(0;1)

                           ⇔f(0).f(1)<0⇔f(0).f(1)<0

( để ý: Δ′=(m+1)2−m=Δ′=(m+1)2−m=m2+m+1>0,∀x∈Rm2+m+1>0,∀x∈R)

                           ⇔m−2(m+1)+1<0⇔m−2(m+1)+1<0 ⇔m>−1⇔m>−1

vậy m>−2m>−2 là kết quả cần tìm

27 tháng 2 2016

giả sử :  \(\frac{mx+m}{\left(m+1\right)x-m+2}>0\)\(,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{m.0+m}{\left(m+1\right).0-m+2}>0\)    \(\Rightarrow\frac{m}{2-m}>0\)

                               \(\Rightarrow0\)\(<\)\(m<\)\(2\)

ngược lại \(0<\)\(m<2\) thì:

\(mx+m>0,\text{∀}x\in\left[0;2\right]\)

\(\left(m+1\right)x\ge0>m-2,\)\(\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\left(m+1\right)x-m+2>0,\text{∀}x\in\left[0;2\right]\)

\(\Rightarrow\frac{mx+m}{\left(m+1\right)x-m+2}>0,\text{∀}x\in\left[0;2\right]\)

vậy:  \(0\)\(<\)\(m<\)\(2\) là kết quả cần tìm

8 tháng 5 2019

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

28 tháng 9 2015

ta có \(y'=3mx^2-6x+m-2\)để hàm số nghịch biến trên R thì 

y'<0 với mọi x thuộc R

suy ra \(\begin{cases}m<0\\\Delta=9-3m\left(m-2\right)<0\end{cases}\) suy ra \(\begin{cases}m<0\\3-m^2+2m<0\end{cases}\) suy ra \(\begin{cases}m<0\\m\in\left(-\infty;-1\right)\cup\left(3;+\infty\right)\end{cases}\)

vậy \(m\in\left(-\infty;-1\right)\) thì hàm số nghịch biến trên R

28 tháng 9 2015

Ta có

\(y'=3mx^2-6x+m-2\) để hàm số nghịc biến trên R thì y'<0 với mọi x thuộc R

suy ra \(\Delta=9-\left(m-2\right)3m<0\) suy ra \(-\left(m^2-2m-3\right)<0\Rightarrow m^2-2m-3>0\)

suy ra m>3 và m<1

vậy với \(m\in\left(-\infty;1\right)\cup\left(3;+\infty\right)\) là điều cần tìm

28 tháng 9 2015

đúng nhé. em dựa theo lý thuyết bên trên ấy nhé

28 tháng 9 2015

\(y'=3x^2-6x+m\)

để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R

suy ra \(\begin{cases}3>0\\\Delta=9-3m<0\end{cases}\) suy ra m>3 

vậy m>3 là điều cần tìm

9 tháng 1 2018

28 tháng 9 2015

ta có \(y'=\frac{mx^2+4mx+14}{\left(x+2\right)^2}\) để hàm số nghịch biến trên \(\left(1;+\infty\right)\) thì y'<0 với mọi x thuộc khoảng đó  suy ra 

\(\begin{cases}m<0\\\Delta=4m^2-14m<0\end{cases}\)

giải ra ta đc đkcủa m