Các đường thẳng y= -5( x+ 1) ; y= 3x+a và y=ax+3 đồng quy khi a= ?

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

+ Phương trình hoành độ giao điểm giữa hai đường thẳng y= -5( x+ 1) và y=3x+a :

-5x-5=3x+a  suy ra -8x-a=5           (1)

+ Phương trình hoành độ giao điểm giữa hai đường thẳng y= 3x+a và y=ax+3là:

ax+3=3x+a hay (a-3) x=a-3

suy ra x=1( vì a≠3).

+Thế x= 1 vào (1) ta được: -8-a=5 nên a= -13.

Chọn D.

NV
1 tháng 6 2020

Gọi pt d có dạng \(y=ax+b\)

\(f\left(x\right)-g\left(x\right)\le0\Leftrightarrow x^2-ax-b\le0\)

Do nghiệm của BPT là \(\left[1;3\right]\Rightarrow f\left(x\right)-g\left(x\right)=0\) có 2 nghiệm pb \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Theo Viet đảo: \(\left\{{}\begin{matrix}a=3+1\\-b=3.1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-3\end{matrix}\right.\) \(\Rightarrow y=4x-3\Leftrightarrow4x-y-3=0\)

\(\Rightarrow A\left(1;1\right)\) ; \(B\left(3;9\right)\)

Diện tích tam giác ABM lớn nhất khi \(d\left(M;d\right)\) lớn nhất

\(d\left(M;d\right)=\frac{\left|4m-m^2-3\right|}{\sqrt{17}}=\frac{\left|m^2-4m+3\right|}{\sqrt{17}}=\frac{\left|\left(m-2\right)^2-1\right|}{\sqrt{17}}\le\frac{1}{\sqrt{17}}\)

Dấu "=" xảy ra khi \(m=2\)

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

20 tháng 11 2022

Bài 2:

Phương trình (d) cần tìm là -3(x-1)+5(y-3)=0

=>-3x+3+5y-15=0

=>-3x+5y-12=0

=>3x-5y+12=0

Bài 3:

vecto chỉ phương là \(\overrightarrow{v}=\left(-3;5\right)\)

=>VTPT là (5;3)

Phương trình đường thẳng là:

5(x-5)+3(y-3)=0

=>5x-25+3y-9=0

=>5x+3y-34=0

9 tháng 4 2017

a)\(\Rightarrow d:4x+5y+14=0\)

\(d':4x+5y+14=0\)

Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)

b) \(\Rightarrow d:x+2y-5=0\)

Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)

c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)

17 tháng 5 2017

Hàm số bậc nhất y=ax+b

Hàm số bậc nhất y=ax+b

29 tháng 9 2018

các bạn ơi giúp mình với ạ

Bài 2:

1: ĐKXĐ: 4x+1>=0 và 9-x<>0

=>x>=-1/4 và x<>9

2: ĐKXĐ: 4x+7>0 hoặc 7-x>0

=>x>-7/4 hoặc x<7

3: ĐKXĐ: 6x+7/3-x>=0

=>(6x+7)/(x-3)<=0

=>-7/6<=x<3

4: ĐKXĐ: (3-x)(3+x)>0

=>-3<x<3

NV
16 tháng 10 2019

1/ \(\left\{{}\begin{matrix}a=2\\a.0+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow y=2x+1\)

2/ \(\left\{{}\begin{matrix}a.3=-1\\a.3+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=1\end{matrix}\right.\) \(\Rightarrow y=-\frac{1}{3}x+1\)

3/ Tọa độ 2 giao điểm \(A\left(-2;1\right)\)\(B\left(2;-2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-2a+b=1\\2a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{3}{4}\\b=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow y=-\frac{3}{4}x-\frac{1}{2}\)