K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

A B C x y z O

Ta có ^yBC = 180 -^B và ^zCB = 180-^C

Xét tam giác BOC có

^OBC = ^yBC/2 = (180-^B)/2

^OCB = ^zCB/2 = (180-^C)/2

^BOC = 180-(^OBC + ^OCB)=180-(180-^B)/2 - (180-^C)/2 = (^B + ^C)/2 (1)

Xét tg ABC có

^xAC = ^B+^C ( góc ngoài của 1 tam giác bằng tổng hai góc trong không kề với nó)

=> (^B+^C)/2 = ^xAC/2 (2)

Từ (1) và (2) => ^BOC = ^xAC/2 mà ^xAC là góc ngoài ở đỉnh A (dpcm)

31 tháng 1 2022

undefined

a) Xét   \(\Delta ABC\) có tia phân giác \(BAC,ACB\)  cắt nhau tại O suy ra O là giao điểm của 3 đường phân giác trong tam giác ABC suy ra BO là phân giác của \(\widehat{CBA}\)   (tính chất 3 đường phân giác của tam giác)

\(\Rightarrow DBO=ABO=\dfrac{DBA}{2}\left(1\right)\) ( tính chất tia phân giác )

Lại có BF là phân giác của \(\widehat{ABx\left(gt\right)}\) \(=ABF=FBx\left(2\right)\)

( tính chất của tia phân giác ) 

Mà \(ABD+ABx=180^o\left(3\right)\left(kềbu\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow OBA+ABF=180^o\div2=90^o\Rightarrow BO\text{⊥ }BF\)

b) Ta có \(FAB+BAC=180^o\)( kề bù ) mà \(BAC=120^o\left(gt\right)\Rightarrow FAB=60^o\)

\(\Rightarrow\text{AD là phân giác của}\widehat{BAC}\)  ( dấu hiệu nhận biết tia phân  giác )

\(\Rightarrow BAD=CAD=60^o\) ( tính chất tia phân giác )

\(\Rightarrow FAy=CAD=60^o\) ( đối đỉnh ) \(\Rightarrow FAB=FAy=60^o\Rightarrow\) AF là tia phân giác của \(BAy\) ( dấu hiệu nhận biết tia phân giác )

Vậy \(\Delta ABD\) có hai tia phân giác của hai góc ngoài tại đỉnh A và đỉnh B cắt nhau tại F nên suy ra DF là phân giác của \(ADB=BDF=ADF\) ( tính chất tia phân giác )

c) Xét \(\Delta ACD\) có phân giác góc ngoài tại đỉnh A và phân giác trong tại đỉnh C cắt nhau tại E nên suy ra DE cũng là phân giác của \(ADB\Rightarrow\)\(D,E,F\) thẳng hàng 

 

 

 

31 tháng 1 2022

thật là ngược mộ nha

dù không biết đúng hay sai nhưng lâu lắm mới thấy người làm nguyên một bài toán hình thế này mà còn có hình nữayeu

28 tháng 5 2017

A B C K I

Các đường phân giác của các góc ngoài tại đỉnh A và C của \(\Delta ABC\) cắt nhau tại K nên BK là tia phân giác của góc B.

Các tia phân giác các góc A và C của \(\Delta ABC\) cắt nhau tại I nên BI là tia phân giác của góc B. Do đó ba điểm B, I, K thẳng hàng.

12 tháng 5 2018

Hỏi đáp Toán

Kẻ IH ⊥ AB, IJ ⊥ BC, IG ⊥ AC, KD ⊥ AB, KE ⊥ AC, KF ⊥ BC

Vì I nằm trên tia phân giác của ∠(BAC) nên IH = IG (tính chất tia phân giác)

Vì I nằm trên tia phân giác của ∠(BCA) nên IH = IG (tính chất tia phân giác)

Suy ra: IH = IJ

Do đó I nằm trên tia phân giác của (ABC) (1)

Vì K nằm trên tia phân giác của ∠(DAC) nên KD = KE (tính chất tia phân giác)

Vì K nằm trên tia phân giác của ∠(ACF) nên KE = KF (tính chất tia phân giác)

Suy ra: KD = KF

Do đó K nằm trên tia phân giác của ∠(ABC) (2)

Từ (1) và (2) suy ra: B, I, K thẳng hàng.

28 tháng 8 2021

Mọi ngừi giúp mình vớiiiii ;-;

3 tháng 4 2020

Hình tự vẽ nha!
Xét tam giác ABC có : \(\widehat{A}\)\(=180\)\(-(\widehat{B}\)\(+\widehat{C}\)\()\)
Xét tam giác BOC có : \(\widehat{OBC}\)\(+\widehat{OCB}\)\(=180-\widehat{BOC}\)\(\Rightarrow\widehat{OBC}\)\(+\widehat{OCB}\)=\(180-130\)\(\Rightarrow\widehat{OBC}\)\(+\widehat{OCB}\)\(=50\)
Vì OC là tia phân giác của \(\widehat{C}\)\(\Rightarrow\widehat{OCB}\)\(=\widehat{OCA}\)\(=\frac{1}{2}\)\(\widehat{C}\)
Vì OB là tia phân giác của \(\widehat{B}\)\(\Rightarrow\widehat{OBC}\)\(=\widehat{OBA}\)\(=\frac{1}{2}\)\(\widehat{B}\)
\(\Rightarrow\frac{1}{2}\)\((\widehat{B}\)\(+\widehat{C}\)\()\)\(=\widehat{OBC}\)\(+\widehat{OCB}\)\(=50\)\(\Rightarrow\widehat{B}\)\(+\widehat{C}\)\(=50.2=100\)\(\Rightarrow\widehat{A}\)\(=180-100\)\(=80\)
Mình không viết độ được mong bạn thông cảm!
Chúc bạn học tốt!