Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn đáp án A.
Do ABCDE là ngũ giác đều nội tiếp đường tròn (O) nên:
Suy ra, sđ A B ⏜ = 72 °
![](https://rs.olm.vn/images/avt/0.png?1311)
vẽ đường tròn ngoại tiếp ngũ giác đều ABCDE
Suy ra tam giác DEI cân tại D ⇒ DI = DE
Mà DE =AE
Nên DI = AE (7)
Từ (4) và (7) suy ra: D I 2 = AI.AD
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình vẽ: Gọi gia điểm của AC và BD là F.
CM AEDF là hình bình hành từ đó suy ra SADE=SADF=1.SADE=SADF=1.
Đặt SBFC=x⇒SCDF=1−x.SBFC=x⇒SCDF=1−x.
CM ΔBFCΔBFC đồng dạng với ΔDFA.ΔDFA.
Tìm được SCDF=−1+√52.SCDF=−1+52.
⇒So=3.618033989dm2⇒So=3.618033989dm2.
Giả sử ngũ giác \(ABCDE\) thỏa mãn đk bài toán
Xét \(\Delta BCD\)Và \(ECD\)và \(S_{BCD}=S_{ECD}\)đáy \(CD\)chung, các đường cao hạ từ \(B\)và \(E\)xuống \(CD\) bằng nhau => \(EB\) ∗ \(CD\),Tương tự \(AC\)//\(ED\) ,\(BD\) ∗\(AE\), \(CE\) ∗ \(AB\), \(DA\) ∗ \(BC\)
Gọi \(I\) \(=EC\)∩\(BC\)=> \(ABIE\)là hình bình hành
=> \(S_{IBE}=S_{ABE}=1\)Đặt\(S_{ICD}=x< 1\)
=> SIBC = SBCD - SICD = 1-x = SECD - SICD = SIED
Lại có: \(\orbr{\begin{cases}S_{ICD}=IC=S_{IBC}\\S_{IDE}=IE=S_{IBE}\end{cases}}\)Hay \(\orbr{\begin{cases}x\\1-x\end{cases}}\)\(=\orbr{\begin{cases}1-x\\1\end{cases}}\)
=> x2-3x+ 1 = 0 => x =\(\frac{3+5}{2}\)Do x<1 => x=\(\frac{3-5}{2}\)
Vậy \(S_{IBE}=\frac{5-1}{2}\)
Do đó SABCDE = SEAB + SEBI + SBCD + SIED
\(=3+\frac{5-1}{2}=\frac{5+5}{2}=5\)
1/2 !! >_<
làm zõ hộ đi