Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) * Cách 1.
b) Do ( hai góc nội tiếp chắn hai cung bằng nhau).
Suy ra: BC là tia phân giác của góc .
Xét tam giác BHD có BA’ vừa là đường cao vừa là đường phân giác nên tam giác BHD cân tại B.
* Cách 1.
Ta có: AD vuông BC tại A' nên A A ' B ^ = 90 o
Vì A A ' B ^ là góc có đỉnh bên trong đường tròn nên:
Tương tự, vì BE vuông góc AC tại B' nên ta có:
E B ' C ^ là góc có đỉnh nằm trong đường tròn
Ta có:(1)
Và (2)
Tà (1) và (2)
Đây là hai góc nội tiếp chắc hai cung DC và CE nên:
Do ( hai góc nội tiếp chắn hai cung bằng nhau).
Suy ra: BC là tia phân giác của góc .
Xét tam giác BHD có BA’ vừa là đường cao vừa là đường phân giác nên tam giác BHD cân tại B.
Xét tứ giác CEHD ta có:
Góc CEH = 900 (Vì BE là đường cao)
Góc CDH = 900 (Vì AD là đường cao)
=> góc CEH + góc CDH = 1800
Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.
Từ tam giác cân BHD suy ra HA'=A'D (BA' là đường trung trực của cạnh HD)
Điểm C nằm trên đường trung trực của HD nên CH=CD.