Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

f(x)= ax^3+4x(x^2-1)+8 = ax^3 + 4x^3 - 4x + 8 = (a + 4)x^3 - 4x + 8
g(x)= x^3 - 4x(bx+1) +c-3 = x^3 - 4bx^2 - 4x + c - 3
Để f(x)=g(x) thì a + 4 = 1, -4b =0 và c - 3 = 8
=> a = -3, b = 0, c = 11

ta có
f(x)= ax3 + 4x(x2 -x) - 4x +8
= ax3 - (4x - 4x(x2-x) ) +8
= ax3 - ( 4x(1-x2-x) ) +8
Dễ thấy nếu f(x)=g(x) thì a=1 ; 1-x2-x = bx-1 ; 8 = c- 3
=> a=1 ; 1-x(x-1) = bx+1 ; c=11
=> a=1 ; b= 1-x ; c=11
vậy .........

Có lẽ bạn nên sửa đề thành \(f\left(x\right)=...x^2+1...\)hoặc là \(g\left(x\right)=...\left(bx-1\right)...\)
Ta có:
\(f\left(x\right)=ax^3+4x^3-4x+8=\left(a+4\right)x^3-4x+8\)
\(g\left(x\right)=x^3+4x\left(bx-1\right)+c-3=x^3+4bx^2-4x+c-3\)
Để \(f\left(x\right)=g\left(x\right)\Leftrightarrow\hept{\begin{cases}a+4=1\\4b=0\\c-3=8\end{cases}\Leftrightarrow\hept{\begin{cases}a=-3\\b=0\\c=11\end{cases}}}\)
Kết luận
\(f\left(x\right)=a\cdot x^3+4x\left(x^2+1\right)+8=a\cdot x^3+4x^3+4x+8=x^3\left(a+4\right)+4x+8\)
\(g\left(x\right)=x^3+4x\left(bx+1\right)+c-3\)
\(=x^3+x^2\cdot4b+4x+c-3\)
f(x)=g(x)
=>\(\) a+4=1; 4b=0; c-3=8
=>a=-3; b=0; c=11
=>a=-3