Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đúng
b) \(\sqrt{1^3+2^3+3^3+4^3}=1+2+3+4\)
\(\sqrt{1^3+2^3+3^3+4^3+5^3=1+2+3+4+5}\)
Các đẳng thức trên luôn đúng:
Ta có công thức tổng quát
\(\sqrt{1^3+2^3+...+n^3}=1+2+..+n\)
a) \(\sqrt{1}=1\)
\(\sqrt{1+2+1}=2\)
\(\sqrt{1+2+3+2+1}=3\)
b) \(\sqrt{1+2+3+4+3+2+1}=4\)
\(\sqrt{1+2+3+4+5+4+3+2+1}=5\)
\(\sqrt{1+2+3+4+5+6+5+4+3+2+1}=6\)
Bài 1 :
\(a)\)\(A=\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}< \sqrt{91}=B\)
Vậy \(A< B\)
\(b)\)\(A=\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}=B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\)\(A=\frac{3\sqrt{x}+3}{\sqrt{x}-2}=\frac{3\sqrt{x}-6}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=\frac{3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=3+\frac{9}{\sqrt{x}-2}\)
Để A nguyên \(\Rightarrow\)\(9⋮\sqrt{x}-2\)\(\Rightarrow\)\(\sqrt{x}-2\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
\(\sqrt{x}-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(x\) | \(9\) | \(1\) | \(25\) | \(\varnothing\) | \(121\) | \(\varnothing\) |
Vậy để A nguyên thì \(x\in\left\{1;9;25;121\right\}\)
Mấy câu còn lại tương tự
Chúc bạn học tốt ~
a) 1,(3) = 10+(3-1)/9 =12/9 = 4/3
...................
b) chẳng hiu dau bai
c) = 5 ; =7 ; = 10
b sai rùi...
a đúng
b sai