Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí kiệu tam giác viết là t/g nhé
a) Có: OA = OB (gt); AC = BD (gt)
=> OA + AC = OB + BD
=> OC = OD
Xét t/g OBC và t/g OAD có:
OB = OA (gt)
O là góc chung
OC = OD (cmt)
Do đó, t/g OBC = t/g OAD (c.g.c)
=> BC = AD (2 cạnh tương tự) (đpcm)
b) t/g OBC = t/g OAD (câu a)
=> OCB = ODA (2 góc tương ứng)
OBC = OAD (2 góc tương ứng)
Mà OBC + CBD = 180o ( kề bù)
OAD + DAC = 180o ( kề bù)
Suy ra CBD = DAC
Xét t/g EAC và t/g EBD có:
EAC = EBD (cmt)
AC = BD (gt)
ACE = BDE (cmt)
Do đó, t/g EAC = t/g EBD (g.c.g) (đpcm)
c) t/g EAC = t/g EBD (câu b)
=> AE = BE (2 cạnh tương ứng)
Xét t/g AOE và t/g BOE có:
OA = OB (gt)
OE là cạnh chung
AE = BE (cmt)
Do đó, t/g AOE = t/g BOE (c.g.c)
=> AOE = BOE (2 cạnh tương ứng)
=> OE là phân giác AOB
hay OE là phân giác xOy (đpcm)
bạn chứng minh tứ giác acdb là hình bình hành =>ac=bd va ac//bd
vi bd=ac ma ac=ae nen ae=bd(1)
vi bd//ac nen bd//ae(2)
tu (1)(2) =>tu giac eadb la hinh binh hanh
ma ed cat ab tai f nen f la trung diem cua ab
hình
a) ∆OAD và ∆OCB có: OA= OC(gt)
∠O chung
OB = OD (gt)
OAD = OCB (c.g.c) AD = BC
Nên ∆OAD=∆OCB(c.g.c)
suy ra AD=BC.
b)
Ta có ∠A1 = 1800 – ∠A2
∠C1 = 1800 – ∠C2
mµ ∠A2 = ∠C2 do ΔOAD = ΔOCB (c/m trên)
⇒ ∠A1 = ∠C1
Ta có OB = OA + AB
OD = OC + CD mà OB = OD, OA = OC ⇒ AB = CD
Xét ΔEAB = ΔECD có:
∠A1 = ∠C1 (c/m trên)
AB = CD (c/m trên)
∠B1 = ∠D1 (ΔOCB = ΔOAD)
⇒ ΔEAB = ΔECD (g.c.g)
c) Xét ΔOBE và ΔODE có:
OB = OD (GT)
OE chung
AE = CE (ΔAEB = ΔCED) ⇒ΔOBE = ΔODE (c.c.c)
⇒ ∠AOE = ∠COE ⇒ OE là phân giác của góc ∠xOy.
Ta có hình vẽ:
Xét tam giác ABC và tam giác ADE có
-A: góc chung
-AB = AD (GT)
-BE = DC (GT)
Vậy tam giác ABC = tam giác ADE (c.g.c)
bạn tự vẽ hình nha
Xét tg AEC và tg AEK có:
góc ACE= góc AEK ( = 90 độ )
AE : cạnh chung
góc A1 = góc A2 ( AE là phân giác )
=> tg AEC= tg AEK ( cạnh huyền - góc nhọn )
=> AC= AK ( 2 cạnh tương ứng )
b) Vì AC= AK ( theo a)
=> tg ACK cân tại A
Vì trong 1 tg cân đường phân giác đồng thời là đường trung tuyến nên Ả là đường trung trực của CK
c) Xét tg AEK và tg BEK có:
góc AKE= góc BKE ( = 90 độ )
KE : cạnh chung
góc KAE = góc KBE ( đồng vị )
=> tg AEK= tg BEK ( c-g-c)
=> KA= KB
a/ Tam giác ABE vuông tại A và tam giác BKE vuông tại K có
ABE=KBE(BE là p/g ABK)
BE là cạnh chung
Tam giác ABE=Tam giác BKE (ch-gn)
=>BA=BK hay tam giác ABK cân tại B nên đường phân giác BE đồng thòi là đường cao. Vậy BE vuông góc với AK.
b/Tam giác ABK cân tại B có B=60 độ nên là tam giác đều =>KB=KA=AB. Tương tụ ta có tam giác KBC cân tại K => KC=KA
Vậy KB=KC
c/EC>AB
Ta có EK là trung trực BC nên EB=EC, mà EB>AB do tam giác ABE vuông tại A nên EC>AB
d/ Gọi giao điểm AB và CD là N. Ta cần chứng minh N,E,K thẳng hàng để 3 đường thắng AB,EK,CD đi qua 1 điểm.
Thật vậy, tam giác AEN và tam giác KEC có
NAE=EKC (=90 độ)
EA=EK (c/mt)
EN=EC(tam giác BNC có phân giác BD đồng thời là đường cao nên đồng thời là trung trức CN)
Vậy tam giác AEN=tam giác KEC (ch-gn)
=> AEN=KEC
2 góc này ở vị trí đối đỉnh nên N,E,K thắng hàng. Vậy N,E,K thẳng hàng =>AB,EK,DC cùng đi qua 1 điểm
Hình tự vẽ.
a) Xét tam giác OAD và tam giác OCB có :
OA = OC
Góc O chung
OB=OD
=> Tam giác OAD = tam giác OCB ( c-g-c)
=> AD = CB ( 2 cạnh tương ứng)
O x y B A C D E
CM a) Xét t/giác OAD và t/giác OCB
có : OA = OC (gt)
góc O : chung
OD = OB (gt)
=> t/giác OAD = t/giác OCB (c.g.c)
=> AD = BC ( hai cạnh tương ứng)
b) Ta có : t/giác OAD= t/giác OCB (cmt)
=> góc B = góc D (hai góc tương ứng)
=> góc OAD = góc OCB (hai góc tương ứng) (1)
Mà \(\widehat{OAD}+\widehat{DAB}=180^0\) (2)
\(\widehat{OCB}+\widehat{BCD}=180^0\) (3)
Từ (1); (2);(3) suy ra góc DAB = góc GCD
Ta lại có : OA + AB = OB
OC + CD = OD
Mà OA = OC; OB = OD
=> AB = CD
Xét t/giác EAB và t/giác ECD
có góc B = góc D (cmt)
AB = CD (cmt)
góc EDB = góc ECD (cmt)
=> t/giác EAD = t/giác ECD (g.c.g)
c) Ta có : t/giác EAD = t/giác ECD (cmt)
=> AE = CE (hai cạnh tương ứng)
Xét t/giác OAE và t/giác OCE
có OA = OC (gt)
AE = CE (Cmt)
OE : chung
=> t/giác OAE = t/giác OCE (c.c.c)
=> góc AOE = góc EOC (hai góc tương ứng)
=> OE là tia p/giác của góc xOy
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{AOD}\) chung
OD=OB
Do đó:ΔOAD=ΔOCB
Suy ra: AD=BC
b: Xét ΔEAB và ΔECD có
\(\widehat{EAB}=\widehat{ECD}\)
AB=CD
\(\widehat{EBA}=\widehat{EDC}\)
Do đó:ΔEAB=ΔECD
c: Ta có: ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó:ΔOEB=ΔOED
SUy ra: \(\widehat{BOE}=\widehat{DOE}\)
hay OE là tia phân giác của góc BOD
d: Xét ΔOBD có OA/OB=OC/OD
nên AC//BD