Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
\(\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=6,z=8\\x=-4,y=-6,z=-8\end{cases}}\)
Đặt \(N:\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow N^2=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
\(\Leftrightarrow N=\pm2\)
Nếu \(N=\left(-2\right)\):
\(\frac{x}{2}=-2\Leftrightarrow y=-4\)
\(\frac{y}{3}=-2\Leftrightarrow y=-6\)
\(\frac{z}{4}=-2\Leftrightarrow y=-8\)
Nếu \(N=2\):
\(\frac{x}{2}=2\Leftrightarrow y=4\)
\(\frac{y}{3}=2\Leftrightarrow y=6\)
\(\frac{z}{4}=2\Leftrightarrow y=8\)
\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)
\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)
Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)
Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)
a) Ta có :
\(\left|\frac{3}{4}x-4\right|\ge0\)
\(\left|3x+5\right|\ge0\)
\(\Rightarrow\left|\frac{3}{4}x-4\right|+\left|3x+5\right|\ge0\)
Mà : \(\left|\frac{3}{4}x-4\right|+\left|3x+5\right|=0\) (đề bài)
\(\Rightarrow\hept{\begin{cases}\frac{3}{4}x-4=0\\3x+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{3}\\x=-\frac{5}{3}\end{cases}}\)
Vì trong một phương trình không thể cùng có 2 giá trị
=> Không có giá trị x thõa mãn đề bài
Theo đầu bài ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)
\(\Rightarrow\frac{2\cdot\left(x+1\right)}{2\cdot2}=\frac{3\cdot\left(y+3\right)}{3\cdot4}=\frac{4\cdot\left(z+5\right)}{4\cdot6}\)
\(\Rightarrow\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}\)
\(=\frac{\left(2x+2\right)+\left(3y+9\right)+\left(4z+20\right)}{4+12+24}\)
\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{4+12+24}\)
\(=\frac{9+31}{40}=1\)
\(\Rightarrow\hept{\begin{cases}x=1\cdot2-1=1\\y=1\cdot4-3=1\\z=1\cdot6-5=1\end{cases}}\)
a) \(\left(x+5\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+5>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-5\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x>2\end{cases}}\) (loại)
Vậy -5 < x < 2
b) \(\left(x+2\right)\left(x-\frac{3}{5}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-\frac{3}{5}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x-\frac{3}{5}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x>\frac{3}{5}\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x< \frac{3}{5}\end{cases}}\)
Vậy x > 3/5 hoặc x < -2
a ) ( x + 5 )( x - 2 ) < 0
=> x + 5 duong va x - 2 am hoac x + 5 am va x - 2 duong
Neu x + 5 duong va x - 2 am thi
-5 < x < 2
=> x \(\in\left\{1;0;-1;-2;-3;-4\right\}\)
Neu x + 5 am va x - 2 duong thi :
x < -5 va x > 2
Vi 2 dieu kien tren mau thuan vs nhau nen x\(\varnothing\)trong truong hop nay
/x/+/y/ =4 (1)
vì /x/ > 0 với mọi x
/y/ > 0 với mọi y
mà /x/+/y/ =4 (theo bài cho)
=> 0< /x/ <4
0< /y/<4
+) với 0< /x/ < 4
/x/ thuộc {0;1;2;3;4} => có 5 giá trị
+với /x/ = 0 => x =0
từ (1) ta có /y/ = 4 => y=4 hoặc y=-4
+ với /x/ =1 => x =1 hoặc x =-1
từ (1) ta có /y/=3 => y=3 hoặc y=-3
.......
+với /x/=4 => x=4 hoặc x=-4
từ (1) ta có /y/ = 0 => y=0
vậy....