Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
DO đó: ΔABE=ΔACD
Suy ra: BE=CD
mấy câu trên thì tôi làm được rồi ấy, chỉ có câu D tôi bí thôi...
Hình bạn tự vẽ nha!
a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân) (1).
+ Vì \(DE\) // \(BC\left(gt\right)\)
=> \(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{ABC}\\\widehat{AED}=\widehat{ACB}\end{matrix}\right.\) (vì các góc đồng vị) (2).
Từ (1) và (2) => \(\widehat{ADE}=\widehat{AED}.\)
=> \(\Delta ADE\) cân tại \(A.\)
b) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(AB=AC\) (tính chất tam giác cân).
+ Vì \(\Delta ADE\) cân tại \(A\left(cmt\right).\)
=> \(AD=AE\) (tính chất tam giác cân).
Xét 2 \(\Delta\) \(ABE\) và \(ACD\) có:
\(AB=AC\left(cmt\right)\)
\(\widehat{A}\) chung
\(AE=AD\left(cmt\right)\)
=> \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
=> \(BE=CD\) (2 cạnh tương ứng).
c) Sửa lại đề là BE cắt CD ở O nhé.
+ Xét \(\Delta OBC\) có:
\(OB+OC>BC\) (theo bất đẳng thức trong tam giác) (3).
+ Xét \(\Delta ODE\) có:
\(OD+OE>DE\) (theo bất đẳng thức trong tam giác) (4).
Cộng theo vế (3) và (4)
\(\Rightarrow OB+OC+OD+OE>DE+BC\left(đpcm\right).\)
Chúc bạn học tốt!
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
b: Xét ΔABE và ΔACD có
AB=AC
góc BAE chung
AE=AD
Do đó ΔABE=ΔACD
Suy ra: BE=CD
c: OD+OE>DE
OB+OC>BC
Do đó;OD+OE+OB+OC>DE+BC
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
d)chịu
Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AD=AB
a, Cho biết AC=4cm, BC=5cm. Tính độ dài AB và BD. Hãy so sánh các góc của tam giác ABC
b, Chứng minh tam giác CBD cân
c, Gọi M là trung điểm của CD, đường thẳng qua D và song song với BC cắt đường thẳng BM tại E. Chứng minh rằng BC = DE và BC+BD>BE
d, Gọi K là gia điểm của AE và DM. Chứng minh rằng BC=6KM
Giải
a) Áp dụng động lý Py- ta - go vào tam giác vuông ABC ta có
=> AB = 3 cm
Mà AB = AD ( gt)
=> AB = AD = 3cm
b) Lại áp dụng tính chất Py-ta-go vào tam giác ACD ta có:
=> DC = 5 cm
=> Xét tam giác CAB vuông tại A và tam giác CAD vuông tại A ta có :
AB = AD
BC = CD (5cm)
=> Tam giác CAB = tam giác CAD(cgv-ch)
c) Vì BC//DE
=> BCM = MDE (so le trong)
Xét tam giác BMC và tam giác DME ta có :
DM = MC
BCM = MDE(cmt)
DME = BMC
=> Tam giác BMC = tam giác DME (g.c.g)
=> BC=DE(dpcm)
A B C D E F I 1 2 1
Cm: a) Xét t/giác ADB và t/giác EDB
có \(\widehat{BAD}=\widehat{BED}=90^0\)(gt)
BD : chung
\(\widehat{B_1}=\widehat{B_2}\)(gt)
=> t/giác ADB = t/giác EDB (ch - gn)
=> AB = BE ; AD = ED (các cặp cạnh t/ứng)
+) AD = ED => D thuộc đường trung trực của AE
+) AB = BE => B thuộc đường trung trực của AE
mà D \(\ne\)B => DB là đường trung trực của AE
=> DB \(\perp\)AE
b) Xét t/giác ADF và t/giác EDC
có: \(\widehat{A_1}=\widehat{DEC}=90^0\)(gt)
AD = DE (cmt)
\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)
=> t/giác ADF = t/giác EDC (g.c.g)
=> DF = DC (2 cạnh t/ứng)
c) Ta có: AD < DF (cgv < ch)
Mà DF = DC (cmt)
=> AD < DC
d) Xét t/giác ABC có AB > AC
=> \(\widehat{BCA}>\widehat{B}\) (quan hệ giữa cạnh và góc đối diện)
=> \(\frac{1}{2}.\widehat{BCA}>\frac{1}{2}.\widehat{B}\)
hay \(\widehat{ICB}>\widehat{B_2}\)
=> BI > IC (quan hệ giữa góc và cạnh đối diện)
a) Xét tam giác vuông BED và tam giác vuông BAD ta có :
ABD = EBD ( BD là pg ABC )
BD chung
=> Tam giác BED = tam giác BAD ( ch-gn)
= >AD = DE( tg ứng)
b) Xét tam giác vuông AFD và tam giác vuông EDC ta có :
AD = DE (cmt)
ADF = EDC ( đối đỉnh)
=> Tam giác AFD = tam giác EDC ( cgv-gn)
=> DF = DC (dpcm)
c) Xét tam giác vuông DEC có
DE < DC( quan hệ giữa cạnh huyền và cạnh góc vuông trong tam giác)
Mà AD = DE (cmt)
=> AD < DC
d) chịu
tamgiac ABC can tai A(gt) => goc ABC = goc ACB (1)
co DE // BC (gt)
goc ADE dong vi goc DBC
goc AED dong vi goc ECB
tu 3 dk tren => goc ADE = goc DBC va goc AED = goc ECB (2)
(1)(2) => goc ADE = goc AED
=> tamgiac ADE can tai A (dau hieu)
b, tamgiac ABC can tai A (gt) => AB = AC
tamgiac ADE can tai A (cau a) => AD = AE
ma AD + DB = AB va AE + EC = AC
nen BD = EC (4)
goc BDE la goc ngoai cua tamgiac ADE => goc BDE = goc A + goc AED (tc)
goc CED la goc ngoai cua tamgiac ADE => goc CED = goc A + goc ADE (tc)
ma goc AED = goc ADE
nen BDE = goc CED (5)
xet tamgiac DEB va tamgiac EDC co : DE chung (6)
(4)(5)(6) => tamgiac DEB = tamgiac EDC (c - g - c)
=> BE = CD (dn)