Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}}\Rightarrow\hept{\begin{cases}2c=x+y\\2a=y+z\\2b=x+z\end{cases}}\)
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(2A=\frac{2a}{b+c-a}+\frac{2b}{a+c-b}+\frac{2c}{a+b-c}\)
\(2A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)\ge6\)
\(\Leftrightarrow A\ge3."="\Leftrightarrow a=b=c\)
Đặt A là biểu thức ở vế trái
Theo bất đẳng thức tam giác: \(\hept{\begin{cases}b+c>a\\c+a>b\\a+b>c\end{cases}\Rightarrow}\hept{\begin{cases}b+c-a>0\\c+a-b>0\\a+b-c>0\end{cases}}\)
Đặt: \(\hept{\begin{cases}b+c-a=x\\a+c-b=y\\a+b-c=z\end{cases}\left(x;y;z>0\right)\Rightarrow\hept{\begin{cases}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{cases}}}\)
Khi đó: \(A=\frac{\frac{y+z}{2}}{x}+\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}\)
\(=\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)
\(=\frac{1}{2}\left[\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right]\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\)
\(\ge\frac{1}{2}\left(2+2+2\right)=3\)
Dấu "=" xảy ra khi x = y = z
BN có thể giải thích cho mk vì sao \(\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{x}{z}+\frac{z}{x}\right]\ge\frac{1}{2}\left(2+2+2\right)\)
đc ko ?
Bài 1 : Đề cần có điều kiện a,b,c là các số thực dương
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(=1\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( vì \(a+b+c=1\))
Áp dụng BĐT Cauchy cho bộ 3 số dương ta có :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\end{cases}}\)
Khi đó : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\frac{3}{\sqrt[3]{abc}}=\frac{3\cdot3\cdot\sqrt[3]{abc}}{\sqrt[3]{abc}}=9\)
Hay \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)(đpcm)
\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ba+bc-b^2}+\frac{c^2}{ca+cb-c^2}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)
\(\ge\frac{\left(a+b+c\right)^2}{\frac{2\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=3\)
Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :
Đặt x= mẫu thứ nhất (1)
y=mẫu thứ hai (2)
z=mẫu thứ ba (3)
Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.
Sau đó rút c= x+y/2(@@@)
Tương tự với (2) và (3), (1) và (2)
Ta có b=x+z/2(@@)... a=y+z/2(@)
Cộng vế với vế của (@), (@@), (@@@) ta có
vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)
Đặt 1/2 ra sau đó tách các phân số ra như sau
\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)
Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại
ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu
Do a;b;c là 3 cạnh tam giác nên
\(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}\Rightarrow\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}}\)
Đặt \(b+c-a=x;a+c-b=y;a+b-c=z\)
Gọi \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(\Rightarrow2A=\frac{\left(y+z\right)}{x}+\frac{\left(x+z\right)}{y}+\frac{\left(x+y\right)}{z}\)
\(=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)\)
Rồi dùng Cô-si
\(\Rightarrow2A\ge6\)
\(\Leftrightarrow A\ge3\)
Dấu = xảy ra khi a=b=c
Ta có bổ đề :
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)
Thật vậy: \(BĐT\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)(luôn đúng vì a/b+b/a>=2)
mà a+b+c=1 nên ta được \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
còn bài 2 phần đằng sau là j ạ>???
Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)
Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)
\(\ge2+2+2=6\)
\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)
ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\) vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3
Áp dụng BĐT AM-GM ta có \(\text{∑}\frac{3}{b+c-a}\ge3\sqrt[3]{\frac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)
Dấu đẳng thức xảy ra khi và chỉ khi a = b = c.
Đặt \(\left\{{}\begin{matrix}a+b-c=x\\b+c-a=y\\c+a-b=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{matrix}\right.\)
Đặt \(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(A=\frac{\frac{x+z}{2}}{y}+\frac{\frac{x+y}{2}}{z}+\frac{\frac{y+z}{2}}{x}\)
\(A=\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\)
\(A=\frac{x}{2y}+\frac{z}{2y}+\frac{x}{2z}+\frac{y}{2z}+\frac{y}{2x}+\frac{z}{2x}\)
Áp dụng BĐT AM-GM ta có:
\(A\ge6\sqrt[6]{\frac{x}{2y}.\frac{z}{2y}.\frac{x}{2z}.\frac{y}{2z}.\frac{z}{2x}.\frac{y}{2x}}=6.\frac{1}{2}=3\)
Dấu " = " xảy ra <=> x=y=z <=> a=b=c
Áp dụng BĐT AM-GM ta có $\sum \frac{a}{b+c-a} \ge 3 \sqrt[3]{ \frac{abc}{(a+b-c)(b+c-a)(c+a-b)}} \ge 3$.
Dấu đẳng thức xảy ra khi và chỉ khi $a=b=c$.