Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H M A)TA CÓ TAM GIÁC ABC CÂN TẠI A NÊN AB=AC
DO AH VUÔNG GÓC VS BC NÊN HB=HC
SUY RA H LÀ TRUNG ĐIỂM CỦA BC
B)XÉT TAM GIÁC MBH VÀ TAM GIÁC MCH CÓ:
MB=MC(GT)
HB=HC(CMT)
MH LÀ CẠNH CHUNG NÊN HOẶC MH VUÔNG GÓC VS BC
TG MBH=TG MCH (C.C.C)-(CẠNH HUYỀN-CẠNH GÓC VUÔNG)
SUY RA GÓC BMH= GÓC CMH
TA CÓ : BMH+CMH=BMC SUY RA MH LÀ TIA PHÂN GIÁC CỦA GÓC BMC
C)CÒN PHẦN C MỊ CHỊU MỊ CX LƯỜI TÍNH
a: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC và HB=HC
b: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
Do đó: ΔABM=ΔACM
c: ΔABM=ΔACM
=>MB=MC
d: Vì MB=MC
nên ΔMBC cân tại M
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là trung trựccủaCB
b: SỬa đề; BM=CM
AH là trung trực của BC
=>M nằm trên đường trung trực của BC
=>MB=MC
A B C H E M
a)Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H có :
\(AB=AC\)
\(\widehat{ABC}=\widehat{ACB}\)
=> \(\Delta AHB\)=\(\Delta AHC\) (ch-gn)
b) Xét \(\Delta AMH\) và \(\Delta CME\) có :
\(AM=MC\)
\(\widehat{AMH}=\widehat{CME}\)
\(ME=MH\)
=> \(\Delta AMH\)=\(\Delta CME\) (c-g-c)
=> AH=CE
c)Có : \(\widehat{HAM}=\widehat{MCE}\)
mà \(\widehat{HAM}và\widehat{MCE}\) ở vị trí so le
=> AH//CE
=> \(\widehat{AHB}=\widehat{HCE}=90^o\)
Xét \(\Delta AHC\) và \(\Delta ECH\) có :
CH chung
\(\widehat{AHB}=\widehat{HCE}=90^o\)
AH=CE
=> \(\Delta AHC\)=\(\Delta ECH\) (c-g-c)
=>\(\widehat{HCA}=\widehat{EHC}\)
mà \(\widehat{HCA}=\widehat{HBA}\)
=> \(\widehat{HBA}=\widehat{EHC}\)
Mà \(\widehat{HBA}và\widehat{EHC}\) ở vị trí đồng vị
=> HM//AB
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK
a: ΔCAM cân tại C
=>góc CAM=góc CMA
b: góc HAM+góc CMA=90 độ
góc BAM+góc CAM=90 độ
mà góc CMA=góc CAM
nên góc HAM=góc BAM
=>ĐPCM
c: Xét ΔAHM và ΔANM có
AH=AN
góc HAM=góc NAM
AM chung
=>ΔAHM=ΔANM
=>góc AHM=góc ANM=90 độ
=>MN vuông góc AB
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xet ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MB=MC
mà MH là đường cao
nên MH là phân giác của góc BMC