K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

Bài 2: 

c: Để hai đường thẳng song song thì m-1=2

hay m=3

NV
7 tháng 5 2023

a.

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a>0\\\sqrt{x^2+x+2}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=x+1\)

Pt trở thành:

\(a+b=2\left(a^2-b^2\right)\)

\(\Leftrightarrow a+b=\left(2a-2b\right)\left(a+b\right)\)

\(\Leftrightarrow2a-2b=1\) (do \(a+b>0\))

\(\Leftrightarrow2a=2b+1\)

\(\Leftrightarrow2\sqrt{x^2+2x+3}=2\sqrt{x^2+x+2}+1\)

\(\Leftrightarrow4\left(x^2+2x+3\right)=4\left(x^2+x+2\right)+1+4\sqrt{x^2+x+2}\)

\(\Leftrightarrow4x+3=4\sqrt{x^2+x+2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{3}{4}\\16\left(x^2+x+2\right)=\left(4x+3\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{3}{4}\\8x=23\end{matrix}\right.\) \(\Rightarrow x=\dfrac{23}{8}\)

NV
7 tháng 5 2023

b.

ĐKXĐ: \(x\ge3\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-3}=a\ge0\\\sqrt{x+2}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=-5\)

Phương trình trở thành:

\(\left(a-b\right)\left(ab+1\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(vô-nghiệm\right)\\ab+1=a+b\end{matrix}\right.\)

\(\Rightarrow ab-a-b+1=0\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-3}=1\\\sqrt{x+2}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\left(ktm\right)\end{matrix}\right.\)

22 tháng 8 2021

a)

=15(can6-1)/(6-1)+4/(4-2)-12/(3-4)

=3(can6-1)+2+12

=3\(\sqrt{6}\)-3+2+12

=17+3can6

các câu còn lại tương tự liên hợp mẫu 

22 tháng 8 2021

làm cho e luôn vs đc k anh

e đg cần gấp á

5 tháng 9 2021

Bài nào?

5 tháng 9 2021

5.

\(A=B\Leftrightarrow\left\{{}\begin{matrix}x-5\ge0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge5\\x>-2\end{matrix}\right.\Leftrightarrow x\ge5\)

16 tháng 10 2017

\(A=\dfrac{2a^2+4}{1-a^3}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\\ =\dfrac{2a^2+4}{\left(1-a\right)\left(1+a+a^2\right)}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\\ =\dfrac{2a^2+4-\left(1-\sqrt{a}\right)\left(1+a+a^2\right)-\left(1+\sqrt{a}\right)\left(1+a+a^2\right)}{\left(1-a\right)\left(1+a+a^2\right)}\\ =\dfrac{2a^2+4-\left(1+a+a^2\right)\left(1-\sqrt{a}+1+\sqrt{a}\right)}{\left(1-a\right)\left(1+a+a^2\right)}\\ =\dfrac{2a^2+4-2\left(1+a+a^2\right)}{\left(1-a\right)\left(1+a+a^2\right)}=\dfrac{2}{1+a+a^2}\\ \)

Ta có A max <=> \(1+a+a^2min\)

Mà 1+a+a^2=\(\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ \)

Dấu bằng xảy ra <=> a=-1/2

=> \(A=\dfrac{2}{1+a+a^2}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{8}{3}\)

Vậy max A=8/3 <=> a=-1/2

=)) mỏi tay quá đê

16 tháng 10 2017

Hì thanks bạn nhiều nhé