Các bn giải giúp mik nha , giải...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

đề 1 bài 4

xét tam gics ABC và tam giác HBA có

góc B chung

góc BAC = góc BHA (=90 độ)

=> tam giác ABC đồng dạng vs tam giác HBA (g.g)

=> AB/HB=BC/AB=> AB^2=HB *BC

áp dụng đl py ta go trog tam giác vuông ABC có

BC^2 = AB^2 +AC^2=6^2+8^2=100

=> BC =\(\sqrt{100}\)=10 cm

ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )

=> AC/AH=BC/BA=>AH=8*6/10=4.8CM

=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm

=>HC =BC-BH=10-3,6=6,4cm

30 tháng 4 2017

dề 1 bài 1

5x+12=3x -14

<=>5x-3x=-14-12

<=>2x=-26

<=> x=-12

vạy S={-12}

(4x-2)*(3x+4)=0

<=>4x-2=0<=>x=1/2

<=>3x+4=0<=>x=-4/3

vậy S={1/2;-4/3}

đkxđ : x\(\ne2;x\ne-3\)

\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)

<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)

=> 4x+12+x-2=0

<=>5x=-10

<=>x=-2 (nhận)

vậy S={-2}

26 tháng 12 2016

a^2 + 4b^2 - 16 + 4ab

= (a^2 +4ab +4b^2)-16

= (a+2b)^2 -4^2

=(a+2b-4)(a+2b+4)

27 tháng 12 2016

:v, nhìn đề muốn mỏi mắt, bắt đầu từ câu 1 tự luận hả bạn

25 tháng 3 2017

Bài 1:

a) Ta có: AB // CD (ABCD là hình chữ nhật; AB,CD là cạnh đối);

=> DBA = BDC (so le trong) (1)

Xét: \(\Delta\) AHB và \(\Delta\) BCD có:

AHB = BCD =900 (gt)

DBA = BDC (theo (1))

Do đó \(\Delta\) AHB đồng dạng \(\Delta\) BCD (g-g)

b) Ta có: *AB = CD = 12(cm)

* \(\Delta\) BCD vuông tai C(gt)

=> BC2 + CD2= BD2

hay 92 + 122 = BD2

=> BD2 = 225

=> BD = \(\sqrt{225}\) =15

Ta có: \(\Delta\) AHB đồng dạng \(\Delta\) BCD (Cmt)

=> \(\dfrac{AH}{BC}\) = \(\dfrac{AB}{BD}\) hay \(\dfrac{AH}{9}\) = \(\dfrac{12}{15}\)

=> AH = \(\dfrac{9.12}{15}\) = 7,2

c) Ta có: \(\Delta\) AHB vuông tại A(gt)

=> HB2 = AB2 - AH2

hay HB2 = 122 - 7,22 = 92,16

=> HB = \(\sqrt{92,16}\) = 9,6

Ta có : S\(\Delta AHB\) =\(\dfrac{AH.HB}{2}\) = \(\dfrac{7,2.9,6}{2}\) = 34.56

26 tháng 3 2017

bài 3:

A C B H 15cm 12cm

27 tháng 5 2017

1)(5x-3y+4z)(5x-3y-4z)=(5x-3y)2-(4z)2

=25x2-30xy+9y2-16z2

Do x2=y2+z2

=>z2=x2-y2

=>(5x-3y+4z)(5x-3y-4z)=25x2-30xy+9y2-16x2+16y2=9x2-30xy+25y2=(3x+5y)2(đpcm)

2)(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

<=>(a+d)2-(b+c)2=(a-d)2-(b-c)2

<=>(a+d)2-(a-d)2=(b+c)2-(b-c)2

<=>(a+d-a+d)(a+d+a-d)=(b+c-b+c)(b+c+b-c)

<=>4ab=4bc

<=>ad=bc(đpcm)

12 tháng 8 2016

baì đâu vậy bạn

13 tháng 8 2016

bài hình thoi đó bạn

 

2 tháng 4 2017

B11:

theo đề bài, ta có: AB=CD=4cm

BC=AD=3cm

áp dụng ĐL pytago vào tam giác vuông ADB, ta có:

\(AB^2+AD^2=DB^2\Rightarrow BD=5cm\)

ta có công thức: \(AH=\dfrac{AD.AB}{BD}=\dfrac{12}{5}=2,4cm\)

áp dụng ĐL pytago vào tam giác vuông ADH, ta có:

\(AH^2+DH^2=AD^2\\ \Rightarrow DH=1,8cm\)

26 tháng 11 2016

bạn chụp dọc đc hem, òi mắt mất

26 tháng 10 2017

bài 4

a)xy+y2-x-y

=(xy+y2)-(x+y)

=y(x+y)-(x+y)

=(x+y)(y-1)

b)25-x2+4xy-4y2

=25-(x2-4xy+4y2)

=25-(x-2y)2

=[5-(x-2y)][5+(x-2y)]

=(5-x+2y)(5+x-2y)

c) xy+xz-2y-2z

=(xy+xz)-(2y+2z)

=x(y+z)-2(y+z)

=(y+z)(x-2)

26 tháng 10 2017

Bài 7: Cứng minh đẳng thức

b) \(\left(x^{n+3}-x^{n+1}.y^2\right)\div\left(x+y\right)=x^{n+2}-x^{n+1}.y\)

Biến đổi vế trái

\(\left(x^{n+3}-x^{n+1}.y^2\right)\div\left(x+y\right)\)

\(=\left(x^n.x^3-x^n.x.y^2\right)\div\left(x+y\right)\)

\(=x^n.x\left(x^2-y^2\right)\div\left(x+y\right)\)

\(=x^{n+1}\left(x-y\right)\left(x+y\right)\div\left(x+y\right)\)

\(=x^{n+1}\left(x-y\right)\)

Biến đổi vế phải

\(x^{n+2}-x^{n+1}.y\)

\(=x^n.x^2-x^n.x.y\)

\(=x^n.x\left(x-y\right)\)

\(=x^{n+1}\left(x-y\right)\) bằng vế trái (điều phải chứng minh)